Advertisement

Nitrogen fixation rate of Acacia mangium Wild at mid rotation in Brazil is higher in mixed plantations with Eucalyptus grandis Hill ex Maiden than in monocultures

  • Ranieri R. Paula
  • Jean-Pierre Bouillet
  • José L. de M. Gonçalves
  • Paulo C. O. Trivelin
  • Fabiano de C. Balieiro
  • Yann Nouvellon
  • Julianne de C. Oliveira
  • José C. de Deus Júnior
  • Bruno Bordron
  • Jean-Paul Laclau
Original Paper

Abstract

Key message

Inter-specific interactions with eucalypts in mixed plantations increased N 2 fixation rate of acacia trees compared to monocultures. N 2 fixation was higher during the wet summer than during the dry winter both in acacia monocultures and in mixed plantations.

Context

Introducing N-fixing trees in fast-growing tropical plantations may contribute to reducing the long-term requirements of N fertilizers. Management practices established in forest monocultures should be revisited in mixed-species plantations.

Aims

This field experiment aimed to compare N2 fixation rates of Acacia mangium Wild in monospecific stands and in mixed-species stands with Eucalyptus grandis W. Hill ex Maiden. A secondary objective was to gain insight into the seasonal variations of N2 fixation.

Methods

15N was applied to acacia and eucalypt monocultures and mixed-species with a 1:1 ratio at mid rotation. Leaves were collected in autumn, winter, spring, and summer to determine the foliar N concentrations and 15N atom fraction. The N content in the above-ground biomass was estimated as well as the percentage of N derived from atmospheric N2 (%Ndfa) using eucalypts in monoculture as reference plants.

Results

%Ndfa values averaged over the year were 14% in monoculture and 44% in mixed-species stands. While the stocking density of acacia trees was twice as high in monoculture as in mixture, the amounts of N fixed in above-ground biomass of acacia trees were close (35–39 kg N ha−1) at 39 months after planting. %Ndfa values were higher during the wet summer than the dry winter both in acacia monocultures and in mixed plantations.

Conclusion

The stocking density of acacia trees can be reduced in mixed plantations with eucalypts in comparison to acacia monocultures with a low influence on the input of N to soil through biological fixation.

Keywords

Symbiotic N2 fixation Seasons Mixed-species plantations Competition Forest rotation 

Notes

Acknowledgements

We should like to thank Rildo Moreira e Moreira (USP-Esalq), Eder Araújo da Silva (www.floragroapoio.com.br), the staff at the Itatinga experimental station, laboratory of stable isotope of CENA-USP, and the Applied Ecology Laboratory of ESALQ-USP for their technical support. We are also grateful Tony Tebby for the revision of the English.

Funding information

We should like to thank the São Paulo Research Foundation-FAPESP (grant 2011/20510-8), FAPESP Thematic Project (grant 2010/16623-9), Intens & Fix project (ANR-2010-STRA-004-03), ANAEE, and ATP Neucapalm (CIRAD).

Compliance with ethical standards

Declaration on conflicts of interest

The authors declare no conflicts of interest.

References

  1. Adams MA, Attwill PM (1984) Role of Acacia spp. in nutrient balance and cycling in regenerating Eucalyptus regnans F. Muell. Forests. II. Field studies of acetylene reduction. Aust J Bot 32:217–223.  https://doi.org/10.1071/BT9840217 CrossRefGoogle Scholar
  2. Augusto L, Delerue F, Gallet-Budynek A, Achat DL (2013) Global assessment of limitation to symbiotic nitrogen fixation by phosphorus availability in terrestrial ecosystems using a meta-analysis approach. Global Biogeochem Cy 27:804–815.  https://doi.org/10.1002/gbc.20069 CrossRefGoogle Scholar
  3. Balieiro FB, Alves BJR, Pereira MG, Faria SM, Franco AA, Campello EFC (2008) Biological nitrogen fixation and nutrient release from litter of the Guachapele leguminous tree under pure and mixed plantation with Eucalyptus. Cerne 14:185–193Google Scholar
  4. Barron AR, Purves DW, Hedin LO (2011) Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165:511–520.  https://doi.org/10.1007/s00442-010-1838-3 CrossRefPubMedGoogle Scholar
  5. Beer J (1988) Litter production and nutrient cycling in coffee (Coffea arabica) or cacao (Theobroma cacao) plantations with shade trees. Agrofor Syst 7:103–114.  https://doi.org/10.1007/BF00046846 CrossRefGoogle Scholar
  6. Binkley D, Giardina C (1997) Nitrogen fixation in tropical forest plantations. In: Nambiar EKS, Brown AG (eds) Management of Soil. Nutrients and Water in Tropical Plantation Forests, ACIAR Monograph, Canberra, pp 297–337Google Scholar
  7. Bouillet J-P, Laclau J-P, Gonçalves JLM, Moreira MZ, Trivelin PCO, Jourdan C, Silva EV, Piccolo MC, Tsai SM, Galiana A (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil: 2. Nitrogen accumulation in the stands and biological N2 fixation. Forest Ecol Manag 255:3918–3930.  https://doi.org/10.1016/j.foreco.2007.10.050 CrossRefGoogle Scholar
  8. Bouillet J-P, Laclau J-P, Gonçalves JLM, Voigtlaender M, Gava JL, Leite FP, Hakamada R, Mareschal L, Mabiala A, Tardy F, Levillain J, Deleporte P, Epron D, Nouvellon Y (2013) Eucalyptus and Acacia tree growth over entire rotation in single- and mixed-species plantations across five sites in Brazil and Congo. Forest Ecol Manag 301:89–101.  https://doi.org/10.1016/j.foreco.2012.09.019 CrossRefGoogle Scholar
  9. Carlsson G, Huss-Danell K (2014) Does nitrogen transfer between plants confound 15N-based quantifications of N2 fixation? Plant Soil 374:345–358.  https://doi.org/10.1007/s11104-013-1802-1 CrossRefGoogle Scholar
  10. Chalk PM, Ladha JK (1999) Estimation of legume symbiotic dependence: an evaluation of techniques based on 15N diluition. Soil Biol Biochem 31:1901–1917.  https://doi.org/10.1016/S0038-0717(99)00095-4 CrossRefGoogle Scholar
  11. Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560.  https://doi.org/10.1002/rcm.5129 CrossRefPubMedGoogle Scholar
  12. Cramer MD, Chimpahango SBM, van Cauter A, Waldram MS, Bond WJ (2007) Grass competition induces N2 fixation in some species African Acacia. J Ecol 95:1123–1133.  https://doi.org/10.1111/j.1365-2745.2007.01285.x CrossRefGoogle Scholar
  13. Diagne N, Thioulouse J, Sanguin H, Prin Y, Krasova-Wade T, Sylla S, Galiana A, Baudoin E, Neyra M, Svistoonoff S, Lebrun M, Duponnois R (2013) Ectomycorrhizal diversity enhances growth and nitrogen fixation of Acacia mangium seedlings. Soil Biol Biochem 57:468–476.  https://doi.org/10.1016/j.soilbio.2012.08.030 CrossRefGoogle Scholar
  14. Epron D, Laclau J-P, Almeida JCR, Gonçalves JLM, Ponton S, Sette C Jr, Delgado-Rojas J, Bouillet JP, Nouvellon Y (2012) Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations? Tree Physiol 32:667–679.  https://doi.org/10.1093/treephys/tpr107 CrossRefPubMedGoogle Scholar
  15. Epron D, Nouvellon Y, Mareschal L, Moreira RM, Koutika L-S, Geneste B, Delgado-Rojas JS, Laclau J-P, Sola G, Gonçalves JLM, Bouillet J-P (2013) Partitioning of net primary production in Eucalyptus and Acacia stands and in mixed-species plantations: a comparison in two contrasting tropical environments. Forest Ecol Manag 301:102–111.  https://doi.org/10.1016/j.foreco.2012.10.034 CrossRefGoogle Scholar
  16. Epron D, Koutika LS, Tchiclelle SV, Bouillet J-P, Mareschal L (2016) Uptake of soil mineral nitrogen by Acacia mangium and Eucalyptus urophylla x grandis: no difference in N form preference. J Plant Nutr Soil Sci 179:726–732.  https://doi.org/10.1002/jpln.201600284 CrossRefGoogle Scholar
  17. FAO (2010) Global Forest Resources Assessment. Food and Agriculture Organization of the United Nations. http://www.fao.org/forestry/fra/fra2010/en/. Accessed 15 June 2016
  18. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. Forest Ecol Manag 233:211–230.  https://doi.org/10.1016/j.foreco.2006.05.012 CrossRefGoogle Scholar
  19. Forrester DI, Schortemeyer M, Stock WD, Bauhus J, Khanna PK, Cowie AL (2007) Assessing nitrogen fixation in mixed- and single-species plantations of Eucalyptus globulus and Acacia mearnsii. Tree Physiol 27:1319–1328.  https://doi.org/10.1093/treephys/27.9.1319 CrossRefPubMedGoogle Scholar
  20. Fried M, Middelboe V (1977) Measurement of amount of nitrogen fixed by a legume crop. Plant Soil 47:713–715.  https://doi.org/10.1007/BF00011042 CrossRefGoogle Scholar
  21. Galiana A, Balle P, N’Guessan Kanga A, Domenach AM (2002) Nitrogen fixation estimated by the 15N natural abundance method in Acacia mangium Willd inoculated with Bradyrhizobium sp. and grown in silvicultural conditions. Soil Biol Biochem 34:251–262.  https://doi.org/10.1016/S0038-0717(01)00179-1 CrossRefGoogle Scholar
  22. Germon A, Guerrini IA, Bordron B, Bouillet J-P, Nouvellon Y, Gonçalves JLM, Jourdan C, Paula RR, Laclau J-P (2017) Consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil exploration by fine-roots down to a depth of 17 m. Plant Soil doi:  https://doi.org/10.1007/s11104-017-3428-1
  23. Gonçalves JLM, Stape JL, Laclau J-P, Bouillet J-P, Ranger J (2008) Assessing the effects of early management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience. South Forests 70:105–118.  https://doi.org/10.2989/SOUTH.FOR.2008.70.2.6.534 CrossRefGoogle Scholar
  24. Gonçalves JLM, Alvares CA, Higa AR, Silva LD, Alfenas AC, Stahl J, Ferraz SFB, Lima WP Brancalioni PHS, Hubner A, Bouillet J-P, Laclau J-P, Nouvellon Y, Epron D (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. Forest Ecol Manag 301:6–27.  https://doi.org/10.1016/j.foreco.2012.12.030 CrossRefGoogle Scholar
  25. Hagan DL, Jose S (2011) Interspecific competition enhances nitrogen fixation in an actinorhizal shrub. Plant Ecol 212:63–68.  https://doi.org/10.1007/s11258-010-9803-0 CrossRefGoogle Scholar
  26. Hardarson G, Danso SKA (1993) Methods for measuring biological nitrogen fixation in grain legumes. Plant Soil 152:19–23.  https://doi.org/10.1007/BF00016330 CrossRefGoogle Scholar
  27. Isaac ME, Harmand J-M, Lesueur D, Lelon J (2011) Tree age and soil phosphorus conditions influence N2-fixation rates and soil N dynamics in natural populations of Acacia senegal. Forest Ecol Manag 261:582–588.  https://doi.org/10.1016/j.foreco.2010.11.011 CrossRefGoogle Scholar
  28. Jensen ES (1996) Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 182:25–38.  https://doi.org/10.1007/BF00010992 CrossRefGoogle Scholar
  29. Jordan MO, Gomez L, Mediene S (2001) Regulation of N uptake in young peach trees in relation to the management of carbon and nitrogen stores. Acta Hortic 564:63–69.  https://doi.org/10.17660/ActaHortic.2001.564.5 CrossRefGoogle Scholar
  30. Koutika L-S, Epron D, Bouillet J-P, Mareschal L (2014) Changes in N and C concentrations, soil acidity and P availability in tropical mixed acacia and eucalypt plantations on a nutrient-poor sandy soil. Plant Soil 379:205–216.  https://doi.org/10.1007/s11104-014-2047-3 CrossRefGoogle Scholar
  31. Laclau J-P, Almeida JCR, Gonçalves JLM, Saint-André L, Ventura M, Ranger J, Moreira RM, Nouvellon Y (2009) Influence of nitrogen and potassium fertilization on leaf lifespan and allocation of above-ground growth in Eucalyptus plantations. Tree Physiol 29:111–124.  https://doi.org/10.1093/treephys/tpn010 CrossRefPubMedGoogle Scholar
  32. Laclau J-P, Bouillet J-P, Gonçalves JLM, Silva EV, Jourdan C, Cunha MCS, Moreira RM, Saint-André L, Maquère V, Nouvellon Y, Ranger J (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil: 1. Growth dynamics and aboveground net primary production. Forest Ecol Manag 255:3905–3917.  https://doi.org/10.1016/j.foreco.2007.10.049 CrossRefGoogle Scholar
  33. Laclau J-P, Nouvellon Y, Reine C, Gonçalves JLM, Krushe AV, Jourdan C, le Maire G, Bouillet J-P (2013) Mixing Eucalyptus and Acacia trees leads to fine root over-yielding and vertical segregation between species. Oecologia 172:903–913.  https://doi.org/10.1007/s00442-012-2526-2 CrossRefPubMedGoogle Scholar
  34. le Maire G, Nouvellon Y, Christina M, Ponzoni FJ, Gonçalves JLM, Bouillet J-P, Laclau J-P (2013) Tree and stand light use efficiencies over a full rotation of single- and mixed-species Eucalyptus grandis and Acacia mangium plantations. Forest Ecol Manag 288:31–42.  https://doi.org/10.1016/j.foreco.2012.03.005 CrossRefGoogle Scholar
  35. Li B, Li Y-Y, Wua H-M, Zhanga FF, Li CJ, Li X-X, Lambers H, Li L (2016) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. PNAS 113:6496–6501.  https://doi.org/10.1073/pnas.1523580113/-/DCSupplemental CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lumley T using Fortran code by Alan Miller (2009) leaps: regression sub set selection. R package version 2.9.https://CRAN.R-project.org/package=leaps. Accessed 24 May 2016
  37. Maquère V (2008) Dynamics of mineral elements under a fast-growing eucalyptus plantation in Brazil. Implication for soil sustainability. Thesis, Agroparitech, ParisGoogle Scholar
  38. Mo Q, Li Z, Zhu W, Zou B, Li Y, Yu S, Ding Y, Chen Y, Li X, Wang F (2016) Reforestation in southern China: revisiting soil N mineralization and nitrification after 8 years restoration. Sci Rep 6:19770.  https://doi.org/10.1038/srep19770 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nouvellon Y, Laclau J-P, Epron D, le Maire G, Bonnefond J-M, Gonçalves JLM, Bouillet J-P (2012) Production and carbon allocation in monocultures and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil. Tree Physiol 32:680–695.  https://doi.org/10.1093/treephys/tps041 CrossRefPubMedGoogle Scholar
  40. Nygren P, Fernández M, Harmand J-M, Leblanc HA (2012) Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems? Nutr Cycl Agroecosys 94:123–160.  https://doi.org/10.1007/s10705-012-9542-9 CrossRefGoogle Scholar
  41. Nygren P, Leblanc HA (2015) Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system. Tree Physiol 35:134–147.  https://doi.org/10.1093/treephys/tpu116 CrossRefPubMedGoogle Scholar
  42. Parrotta JA, Baker DD, Fried M (1996) Changes in dinitrogen fixation in maturing stands of Casuarina equisetifolia and Leucaena leucocephala. Can J For Res 26:1684–1691.  https://doi.org/10.1139/x26-190 CrossRefGoogle Scholar
  43. Paula RR, Bouillet J-P, Trivelin PCO, Zeller B, Gonçalves JLM, Nouvellon Y, Bouvet J-M, Plassard C, Laclau J-P (2015) Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol Biochem 91:99–108.  https://doi.org/10.1016/j.soilbio.2015.08.017 CrossRefGoogle Scholar
  44. Pfautsch S, Rennenberg H, Bell TL, Adams MA (2009) Nitrogen uptake by Eucalyptus regnans and Acacia spp.-preferences, resource overlap and energetic costs. Tree Physiol 29:389–399.  https://doi.org/10.1093/treephys/tpn033 CrossRefPubMedGoogle Scholar
  45. Piotto D (2008) A meta-analysis comparing tree growth in monocultures and mixed plantations. Forest Ecol Manag 255:781–786.  https://doi.org/10.1016/j.foreco.2007.09.065 CrossRefGoogle Scholar
  46. Proe MF, Midwood AJ, Craig J (2000) Use of stable isotopes to quantify nitrogen, potassium and magnesium dynamics in young Scots pine (Pinus sylvestris). New Phytol 146:461–469.  https://doi.org/10.1046/j.1469-8137.2000.00658.x CrossRefGoogle Scholar
  47. Prudent M, Vernoud V, Girodet S, Salon C (2016) How nitrogen fixation is modulated in response to different water availability levels and during recovery: a structural and functional study at the whole plant level. Plant Soil 399:1–12.  https://doi.org/10.1007/s11104-015-2674-3 CrossRefGoogle Scholar
  48. Rachid CTCC, Balieiro FC, Peixoto RS, Pinheiro YAS, Piccolo MC, Chaer GM, Rosado AS (2013) Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes. Soil Biol Biochem 66:146–153.  https://doi.org/10.1016/j.soilbio.2013.07.005 CrossRefGoogle Scholar
  49. Rastetter EB, Vitousek PM, Field C, Shaver GR, Herbert D, Gren GI (2001) Resource optimization and symbiotic nitrogen fixation. Ecosystems 4:369–388.  https://doi.org/10.1007/s10021-001-0018-z CrossRefGoogle Scholar
  50. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 10 May 2016
  51. Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231.  https://doi.org/10.1007/s10021-001-0067-3 CrossRefGoogle Scholar
  52. Roskoski JP, van Kessel C (1985) Annual, seasonal and diel variation in nitrogen fixing activity by Inga jinicuil, a tropical leguminous tree. Oikos 44:306–312.  https://doi.org/10.2307/3544704 CrossRefGoogle Scholar
  53. Santos FM, Balieiro FC, Ataíde DHS, Diniz AR, Chaer GM (2016) Dynamics of aboveground biomass accumulation in monospecific and mixed-species plantations of Eucalyptus and Acacia on a Brazilian sandy soil. Forest Ecol Manag 363:86–97.  https://doi.org/10.1016/j.foreco.2015.12.028 CrossRefGoogle Scholar
  54. Sheffer E, Batterman SA, Levin SA, Hedin LO (2015) Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nature Plants 1:15182.  https://doi.org/10.1038/nplants.2015.182 CrossRefPubMedGoogle Scholar
  55. Silva EV, Gonçalves JLM, Coelho SRF, Moreira RM, Mello SLM, Bouillet J-P, Jourdan C, Laclau J-P (2009) Dynamics of fine root distribution after establishment of monospecific and mixed-species plantations of Eucalyptus grandis and Acacia mangium. Plant Soil 325:305–318.  https://doi.org/10.1007/s11104-009-9980-6 CrossRefGoogle Scholar
  56. Soussana J-F, Tallec T (2010) Can we understand and predict the regulation of biological N2 fixation in grassland ecosystems? Nutr Cycl Agroecosys 88:197–213.  https://doi.org/10.1007/s10705-009-9335-y CrossRefGoogle Scholar
  57. Srivastava AK, Ambasht RS (1994) Soil moisture control of nitrogen fixation activity in dry tropical Casuarina plantation forest. J Environ Manag 42:49–54.  https://doi.org/10.1006/jema.1994.1059 CrossRefGoogle Scholar
  58. Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martineli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45.  https://doi.org/10.1023/A:1015798428743 CrossRefGoogle Scholar
  59. Voigtlaender M (2012) Produção de biomassa aérea e ciclagem de nitrogênio em consórcio de genótipos de Eucalyptus com Acacia mangium. University of São Paulo, ThesisCrossRefGoogle Scholar
  60. Voigtlaender M, Laclau J-P, Gonçalves JLM, Piccolo MC, Moreira MZ, Nouvellon Y, Ranger J, Bouillet J-P (2012) Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant Soil 352:99–111.  https://doi.org/10.1007/s11104-011-0982-9 CrossRefGoogle Scholar
  61. Wang F, Zhu W, Zou B, Neher DA, Fu S, Xia H, Li Z (2013) Seedling growth and soil nutrient availability in exotic and native tree species: implications for afforestation in southern China. Plant Soil 364:207–218.  https://doi.org/10.1007/s11104-012-1353-x CrossRefGoogle Scholar
  62. Weatherall A, Proe MF, Craig J, Cameron A-D, Midwood AJ (2006) Internal cycling of nitrogen, potassium and magnesium in young Sitka spruce. Tree Physiol 26:673–680.  https://doi.org/10.1093/treephys/26.5.673 CrossRefPubMedGoogle Scholar
  63. Wickham H, Francois R (2015) dplyr: a grammar of data manipulation. R package version 0.4.3. https://CRAN.R-project.org/package=dplyr.Accessed: 15 May 2016
  64. Wurzburger N, Miniat CF (2014) Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree. Oecologia 174:1117–1126.  https://doi.org/10.1007/s00442-013-2851-0 CrossRefPubMedGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Ranieri R. Paula
    • 1
    • 2
  • Jean-Pierre Bouillet
    • 1
    • 3
  • José L. de M. Gonçalves
    • 1
  • Paulo C. O. Trivelin
    • 4
  • Fabiano de C. Balieiro
    • 5
  • Yann Nouvellon
    • 1
    • 3
  • Julianne de C. Oliveira
    • 1
  • José C. de Deus Júnior
    • 1
    • 6
  • Bruno Bordron
    • 1
  • Jean-Paul Laclau
    • 3
    • 6
  1. 1.USP, ESALQDepartamento de Ciências FlorestaisSão PauloBrazil
  2. 2.UFESDepartamento de Ciências Florestais e da MadeiraEspírito SantoBrazil
  3. 3.Eco&Sols, INRA, CIRAD, IRD, Montpellier SupAgroUniversity of MontpellierMontpellierFrance
  4. 4.USP, CENADivisão de Desenvolvimento de Técnicas Analíticas e NuclearesSão PauloBrazil
  5. 5.Embrapa SolosRio de JaneiroBrazil
  6. 6.UNESPDepartamento de Solos e Recursos AmbientaisSão PauloBrazil

Personalised recommendations