Annals of Forest Science

, 74:69 | Cite as

Evaluation of the use of low-density LiDAR data to estimate structural attributes and biomass yield in a short-rotation willow coppice: an example in a field trial

  • María Castaño-Díaz
  • Pedro Álvarez-Álvarez
  • Brian Tobin
  • Maarten Nieuwenhuis
  • Elías Afif-Khouri
  • Asunción Cámara-Obregón
Original Paper
  • 130 Downloads

Abstract

Key message

LiDAR data (low-density data, 0.5 pulses m−2) represent an excellent management resource as they can be used to estimate forest stand characteristics in short-rotation willow coppice (SRWC) with reasonable accuracy. The technology is also a useful, practical tool for carrying out inventories in these types of stands.

Context

This study evaluated the use of very low-density airborne LiDAR (light detection and ranging) data (0.5 pulses m−2), which can be accessed free of charge, in an SRWC established in degraded mining land.

Aims

This work aimed to determine the utility of low-density LiDAR data for estimating main forest structural attributes and biomass productivity and for comparing the estimates with field measurements carried out in an SRWC planted in marginal land.

Methods

The SRWC was established following a randomized complete block design with three clones, planted at two densities and with three fertilization levels. Use of parametric (multiple regression) and non-parametric (classification and regression trees, CART) fitting techniques yielded models with good predictive power and reliability. Both fitting methods were used for comprehensive analysis of the data and provide complementary information.

Results

The results of multiple regression analysis indicated close relationships (Rfit2 = 0.63–0.97) between LiDAR-derived metrics and the field measured data for the variables studied (H, D20, D130, FW, and DW). High R2 values were obtained for models fitted using the CART technique (R2 = 0.73–0.94).

Conclusion

Low-density LiDAR data can be used to model structural attributes and biomass yield in SRWC with reasonable accuracy. The models developed can be used to improve and optimize follow-up decisions about the management of these crops.

Keywords

Willow Mining land Energy crops SRC Airborne laser scanning LiDAR 

Supplementary material

13595_2017_665_MOESM1_ESM.docx (22 kb)
Online Resource 1(DOCX 22.2 kb)
13595_2017_665_MOESM2_ESM.docx (18 kb)
Online Resource 2(DOCX 17.6 kb)
13595_2017_665_MOESM3_ESM.pdf (455 kb)
Online Resource 3(PDF 454 kb)
13595_2017_665_MOESM4_ESM.docx (16 kb)
Online Resource 4(DOCX 16.1 kb)
13595_2017_665_MOESM5_ESM.docx (13 kb)
Online Resource 5(DOCX 12.8 kb)

References

  1. Bell JF (1999) Tree-based methods. The use of classification trees to predict species distributions. In: Fielding A (ed) Machine learning methods for ecological applications. Kluwer, DordrechtGoogle Scholar
  2. Belsley DA, Kuh E, Welsch RE (2005) Regression diagnostics: identifying influential data and sources of collinearity. Wiley, New YorkGoogle Scholar
  3. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth and Brooks/Cole, MontereyGoogle Scholar
  4. Broeckx LS, Verlinden MS, Ceulemans R (2012) Establishment and two-year growth of a bio-energy plantation with fast-growing Populus trees in Flanders (Belgium): effects of genotype and former land use. Biomass Bioenergy 42:151–163. https://doi.org/10.1016/j.biombioe.2012.03.005 CrossRefGoogle Scholar
  5. Cho MA, Mathieu R, Asner GP, Naidoo L, van Aardt J, Ramoelo A, Debba P, Wessels K, Main R, Smit IPJ, Erasmus B (2012) Mapping tree species composition in south African savannas using an integrated airborne spectral and LiDAR system. Remote Sens Environ 125:214–226. https://doi.org/10.1016/j.rse.2012.07.010 CrossRefGoogle Scholar
  6. Clark ML, Clark DB, Roberts DA (2004) Small-footprint LIDAR estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sens Environ 91:68–89. https://doi.org/10.1016/j.rse.2004.02.008 CrossRefGoogle Scholar
  7. Condés S, Fernández-Landa A, Rodríguez F (2013) Influencia del inventario de campo en el error de muestreo obtenido en un inventario con tecnología Lidar. 6° Congreso Forestal Español (Sociedad Española de Ciencias Forestales). 6CFE01–432Google Scholar
  8. Coops NC, Hilker T, Wulder MA, St-Onge B, Newnham G, Siggins A, Trofymow JT (2007) Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees 21:295. https://doi.org/10.1007/s00468-006-0119-6 CrossRefGoogle Scholar
  9. Dalponte M, Bruzzone L, Gianelle DA (2011) System for the estimation of single-tree stem diameter and volume using multireturn LIDAR data. IEEE Trans Geosci Remote Sens 49:2479–2490. https://doi.org/10.1109/TGRS.2011.2107744 CrossRefGoogle Scholar
  10. Deconinck E, Hancock T, Coomans D, Massart DJ, Vander Heyden Y (2005) Classification of drugs in absorption classes using the classification and regression trees (CART) methodology. J Pharm Biomed Anal 39:91–103. https://doi.org/10.1016/j.jpba.2005.03.008 CrossRefPubMedGoogle Scholar
  11. Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Arvizu D, Bruckner T, Christensen J, Devernay J-M, Faaij A, Fischedick M, Goldstein G, Hansen J, Huckerby A, Jäger-Waldau S, Kadner D, Kammen V, Krey A, Kumar A, Lewis O, Lucon P, Matschoss L, Maurice C, Mitchell W, Moomaw J, Moreira A, Nadai LJ, Nilsson J, Nyboer A, Rahman J, Sathaye J, Sawin R, Schaeffer T, Schei S, Schlömer R, Sims A, Verbruggen C, Von Stechow K, Urama R, Wiser F, Yamba T, Zwickel (2011) Summary for policy makers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlöme S, Stechow CV (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. EEA (2011) Biogeographical regions. European Environment Agency, Copenhagen [online] URL: http://www.eea.europa.eu/dataand-maps/data/biogeographical-regions-europe-1 Google Scholar
  13. Eid T, Gobakken T, Næsset E (2004) Comparing stand inventories for large areas based on photo-interpretation and laser scanning by means of cost-plus-loss analyses. Scand J For Res 19:512–523CrossRefGoogle Scholar
  14. Estornell J, Ruiz LA, Velázquez-Martí B, Fernández-Sarría A (2011) Estimation of shrub biomass by airborne LiDAR data in small forest stands. For Ecol Manag 262:1697–1703. https://doi.org/10.1016/j.foreco.2011.07.026 CrossRefGoogle Scholar
  15. Estornell J, Velázquez-Martí B, López-Cortés I, Salazar D, Fernández-Sarría A (2014) Estimation of wood volume and height of olive tree plantations using airborne discrete-return LiDAR data. GISci Remote Sens 51:17–29. https://doi.org/10.1080/15481603.2014.883209 CrossRefGoogle Scholar
  16. Falkowski MJ, Smith AMS, Hudak AT, Gessler PE, Vierling LA, Crookston NL (2006) Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of LiDAR data. Can J Remote Sens 32:153–161. https://doi.org/10.5589/m06-005 CrossRefGoogle Scholar
  17. Forest Research (2003) Mensurational variables protocol. In: Yield Models for Energy Coppice of Poplar and Willow. 1–14Google Scholar
  18. García M, Riaño D, Chuvieco E, Danson FM (2010) Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens Environ 114:816–830. https://doi.org/10.1016/j.rse.2009.11.021 CrossRefGoogle Scholar
  19. García-Gutierrez J, González-Ferreiro E, Riquelme-Santos JC, Miranda D, Dieguez-Aranda U, Navarro-Cerrillo RM (2014) Evolutionary feature selection to estimate forest stand variables using LiDAR. Int J Appl Earth Obs Geoinf 26:119–131. https://doi.org/10.1016/j.jag.2013.06.005 CrossRefGoogle Scholar
  20. Gleason CJ, Im J (2012) Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens Environ 125:80–91. https://doi.org/10.1016/j.rse.2012.07.006 CrossRefGoogle Scholar
  21. Gonçalves-Seco L, González-Ferreiro E, Diéguez-Aranda U, Fraga-Bugallo B, Crecente R, Miranda D (2011) Assessing attributes of high density Eucalyptus globulus stands using airborne laser scanner data. Int J Remote Sens 32:9821–9841. https://doi.org/10.1080/01431161.2011.593583 CrossRefGoogle Scholar
  22. González-Ferreiro E, Diéguez-Aranda U, Miranda D (2012) Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry 85:281–292. https://doi.org/10.1093/forestry/cps002 CrossRefGoogle Scholar
  23. González-Ferreiro E, Miranda D, Barreiro-Fernández L, Buján S, García-Gutiérrez J, Dieguez-Aranda U (2013) Modelling stand biomass fractions in Galician Eucalyptus globulus plantations by use of different LiDAR pulse densities. For Syst 22:510–525. https://doi.org/10.5424/fs/2013223-03878 Google Scholar
  24. Gordon L (2013) Using classification and regression trees (CART) in SAS for applications in public health. SAS Glob Forum 1–8Google Scholar
  25. Graham B (2008) Using low density, small footprint LIDAR in forest inventory applications in the Southeastern U.SGoogle Scholar
  26. Hall SA, Burke IC, Box DO, Kaufmann MR, Stoker JM (2005) Estimating stand structure using discrete-return Lidar: an example from low density, fire prone ponderosa pine forests. For Ecol Manag 208:189–209. https://doi.org/10.1016/j.foreco.2004.12.001 CrossRefGoogle Scholar
  27. Hawbaker TJ, Gobakken T, Lesak A, Trømborg E, Contrucci K, Radeloff V (2010) Light detection and ranging-based measures of mixed hardwood forest structure. For Sci 56:313–326Google Scholar
  28. Hayashi R, Weiskittel A, Sader S (2014) Assessing the feasibility of low-density LiDAR for stand inventory attribute predictions in complex and managed forests of northern Maine, USA. Forests 5:363–383. https://doi.org/10.3390/f5020363 CrossRefGoogle Scholar
  29. Hirsch RP (1991) Validation samples. Biometrics 47:1193–1194PubMedGoogle Scholar
  30. IBM Corp. Released (2015) IBM SPSS Statistics for Windows, Version 23.0. IBM Corp, ArmonkGoogle Scholar
  31. IDAE (2007) Biomasa: cultivos energéticos. Instituto para la Diversificación y el Ahorro de la Energía (IDAE), 49 pp, MadridGoogle Scholar
  32. Jama A, Nowak W (2012) Willow (Salix viminalis L.) in purifying sewage sludge treated soils. Polish J Agron 9:3–6Google Scholar
  33. Keoleian GA, Volk TA (2005) Renewable energy from willow biomass crops: life cycle energy, environmental and economic performance. CRC Crit Rev Plant Sci 24:385–406. https://doi.org/10.1080/07352680500316334 CrossRefGoogle Scholar
  34. Kozak A, Kozak R (2003) Does cross validation provide additional information in the evaluation of regression models? Can J For Res 33:976–987. https://doi.org/10.1139/X03-022 CrossRefGoogle Scholar
  35. Kraus K, Mikhail EM (1972) Linear least squares interpolation. Photogramm Eng 38:1016–1029Google Scholar
  36. Kraus K, Pfeifer N (1998) Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J Photogramm Remote Sens 53:193–203. https://doi.org/10.1016/S0924-2716(98)00009-4 CrossRefGoogle Scholar
  37. Kuzovkina YA, Quigley MF (2005) Willows beyond wetlands: uses of Salix L. species for environmental projects. Water Air Soil Pollut 162:183–204. https://doi.org/10.1007/s11270-005-6272-5 CrossRefGoogle Scholar
  38. Lefsky MA, Cohen W, Spies T (2001) An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon. Can J For Res 31:78–87. https://doi.org/10.1139/cjfr-31-1-78 CrossRefGoogle Scholar
  39. Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) LiDAR remote sensing for ecosystem studies: LiDAR, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. Bioscience 52:19–30. https://doi.org/10.1641/0006-3568 CrossRefGoogle Scholar
  40. Lefsky MA, Hudak AT, Cohen WB, Acker SA (2005) Geographic variability in LiDAR predictions of forest stand structure in the Pacific Northwest. Remote Sens Environ 95(4):532–548. https://doi.org/10.1016/j.rse.2004.12.022.
  41. Lever J, Krzywinski M, Altman N (2016) Points of significance: model selection and overfitting. Nat Methods 13:703–704. https://doi.org/10.1038/nmeth.3968 CrossRefGoogle Scholar
  42. Li Y, Andersen H-E, McGaughey R (2008) A comparison of statistical methods for estimating forest biomass from light detection and ranging data. J Appl For 23:223–231Google Scholar
  43. Lim K, Treitz P, Wulder M (2003) LiDAR remote sensing of forest structure. Prog Phys Geogr 1:1–38. https://doi.org/10.1191/0309133303pp360ra Google Scholar
  44. Magdaleno-Mas F, Martínez-Romero R (2006) Aplicaciones de la teledetección láser (LiDAR) en la caracterización y gestión del medio fluvial. Ingeniería Civil 142:1–15Google Scholar
  45. Magnussen S, Boudewyn P (1998) Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Can J For Res 28:1016–1031CrossRefGoogle Scholar
  46. Maltamo M, Mustonen K, Hyyppä J, Pitkänen J, Yu X (2004) The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve. Can J For Res 34:1791–1801. https://doi.org/10.1139/X04-055 CrossRefGoogle Scholar
  47. Mandeville PB (2008) Tema 18: ¿Por qué se deben centrar las covariables en regresión lineal? Ciencia Uanl 3:300–305Google Scholar
  48. Maune D (2007) Digital Elevation Model Technologies and Applications: The DEM User’s Manual, 2nd edn. American Society for Photogrammetry and Remote Sensing, BethesdaGoogle Scholar
  49. McGaughey R (2010) Fusion/LDV: software for LiDAR data analysis and visualization. USDA Forest Service. Pacific Northwest Research Station. FUSION Manual. FUSION Version 2.80Google Scholar
  50. Means J, Acker S (2000) Predicting forest stand characteristics with airborne scanning LiDAR. Photogramm Eng Remote Sens 66:1367–1371. https://doi.org/10.1016/S0034-4257(01)00290-5 Google Scholar
  51. Means JE, Acker SA, Harding DJ, Blair JB, Lefsky MA, Cohen WB, Harmon ME, McKee WA (1999) Use of large-footprint scanning airborne LiDAR to estimate forest stand characteristics in the western cascades of Oregon. Remote Sens Environ 67:298–308. https://doi.org/10.1016/S0034-4257(98)00091-1 CrossRefGoogle Scholar
  52. Montealegre Gracia AL, Lamelas Gracia MT, De la Riva Fernández J, García Martín A, Escribano Bernal F (2015) Cartografía de la biomasa aérea total en masas de Pinus halepensis Mill. en el entorno de Zaragoza mediante datos LiDAR-PNOA y trabajo de campo. In: Análisis espacial y representación geográfica: innovación y aplicación. pp 769–776Google Scholar
  53. Myers RH (1990) Classical and modern regression with applications, 2nd edn. Duxbury Press, BelmontGoogle Scholar
  54. Næsset E (1997) Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS J Photogramm Remote Sens 52:49–56CrossRefGoogle Scholar
  55. Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99. https://doi.org/10.1016/S0034-4257(01)00290-5 CrossRefGoogle Scholar
  56. Næsset E (2011) Estimating above-ground biomass in young forests with airborne laser scanning. Remote Sens 32:473–501. https://doi.org/10.1080/01431160903474970 CrossRefGoogle Scholar
  57. Næsset E, Gobakken T (2008) Estimation of above and below ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens Environ 112:3079–3090. https://doi.org/10.1016/j.rse.2008.03.004 CrossRefGoogle Scholar
  58. Næsset E, Gobakken T, Holmgren J, Hyyppä H, Hyyppä J, Maltamo M, Nilsson M, Olsson H, Persson A, Söderman U (2004) Laser scanning of forest resources: the Nordic experience. Scand J For Res 19:482–499. https://doi.org/10.1080/02827580410019553 CrossRefGoogle Scholar
  59. Paredes-Sánchez JP, García-Elcoro VE, Rosillo-Calle F, Xiberta-Bernat J (2016) Assessment of forest bioenergy potential in a coal-producing area in Asturias (Spain) and recommendations for setting up a Biomass Logistic Centre (BLC). Appl Energy 171:133–141. https://doi.org/10.1016/j.apenergy.2016.03.009 CrossRefGoogle Scholar
  60. Rosso L, Facciotto G, Bergante S, Vietto L, Nervo G (2013) Selection and testing of Populus alba and Salix spp. as bioenergy feedstock: preliminary results. Appl Energy 102:87–92. https://doi.org/10.1016/j.apenergy.2012.07.042 CrossRefGoogle Scholar
  61. Sánchez Martínez FJ, Andrés-Moreno C, García-Oliva-González M (2011) Introducción a la tecnología LiDAR. In: Marquínez-García J, Yagüe-Córdova J (eds) Guía para la aplicación del sistema nacional de cartografía de zonas inundables. Dirección General del Agua. Ministerio de Medio Ambiente y Medio Rural y Marino. Madrid, pp 17–32Google Scholar
  62. Seidel D, Ammer C (2014) Efficient measurements of basal area in short rotation forests based on terrestrial laser scanning under special consideration of shadowing. IForest 7:227–232. https://doi.org/10.3832/ifor1084-007 CrossRefGoogle Scholar
  63. Song Y, Lu Y (2015) Decision tree methods : applications for classification and prediction. Shanghai Arch Psychiatry 27:130–135. 10.11919/j.issn.1002-0829.215044 PubMedPubMedCentralGoogle Scholar
  64. Styles D, Jones M (2007) Energy crops in Ireland: quantifying the potential life-cycle greenhouse gas reductions of energy-crop electricity. Biomass Bioenergy 31:759–772. https://doi.org/10.1016/j.biombioe.2007.05.003 CrossRefGoogle Scholar
  65. Suárez-Antuña F (2005) La organización de los espacios mineros de la hulla en Asturias. Scripta Nova: Revista Electrónica de Geografía y Ciencias Sociales 9:203Google Scholar
  66. Tahvanainen L, Rytko V (1999) Biomass production of Salix viminalis in southern Finland and the effect of soil properties and climate conditions on its production and survival. Biomass Bioenergy 16:103–117. https://doi.org/10.1016/S0961-9534(98)00074-9 CrossRefGoogle Scholar
  67. Tanarro I (2010) Spectroscopic Techniques. In: Escribano R, Tanarro I (eds) Spectroscopic of the Atmospheres. Consejo Superior de Investigaciones Científicas (CSIC), MadridGoogle Scholar
  68. Thomas V, Treitz P, McCaughey JH, Morrison I (2006) Mapping stand-level forest biophysical variables for a mixedwood boreal forest using Lidar: an examination of scanning density. Can J For Res 36:34–47. https://doi.org/10.1139/x05-230 CrossRefGoogle Scholar
  69. Timofeev R (2004) Classification and regression trees (CART) theory and applications. Doctoral dissertation. Humboldt University, BerlinGoogle Scholar
  70. Treitz P, Kevin L, Murray W, Doug P, Nesbitt D, Etheridge D, (2010) LiDAR data acquisition and processing protocols for forest resource inventories in Ontario, Canada. In: Silvilaser 2010: The 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems, Freiburg, GermanyGoogle Scholar
  71. Van Aardt JA, Wynne RH, Oderwald RG (2006) Forest volume and biomass estimation using small-footprint LiDAR-distributional parameters on a per-segment basis. For Sci 52:636–649Google Scholar
  72. Venturi P, Gigler JK, Huisman W (1999) Economical and technical comparison between herbaceous (Miscanthus x giganteus) and woody energy crops (Salix viminalis). Renew Energy 16:1023–1026. https://doi.org/10.1016/S0960-1481(98)00363-2 CrossRefGoogle Scholar
  73. Wehr A, Lohr U (1999) Airborne laser scanning an introduction and overview. ISPRS J Photogramm Remote Sens 54:68–82CrossRefGoogle Scholar
  74. Weih M (2004) Intensive short rotation forestry in boreal climates: present and future perspectives. Can J For Res 34:1369–1378. https://doi.org/10.1139/x04-090 CrossRefGoogle Scholar
  75. Weishampel JF, Ranson KJ, Harding DJ (1996) Remote sensing of forest canopies. Selbyana 17:6–14Google Scholar
  76. Wulder M (1998) Optical remote-sensing technique for the assessment of forest inventory and biophysical parameters. Prog Phys Geogr 22:449–476. https://doi.org/10.1177/030913339802200402 CrossRefGoogle Scholar
  77. Zhao K, Popescu S, Nelson R (2009) LiDAR remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers. Remote Sens Environ 113:182–196. https://doi.org/10.1016/j.rse.2008.09.009 CrossRefGoogle Scholar
  78. Zimble DA, Evans DL, Carlson GC, Parker RC, Grado SC, Gerard PD (2003) Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sens Environ 87:171–182. https://doi.org/10.1016/S0034-4257(03)00139-1 CrossRefGoogle Scholar
  79. Zurba K, Oertel C, Matschullat J (2013) CO2 emissions from willow and poplar short rotation forestry (SRF) on a derelict mining soil. 1–4Google Scholar

Copyright information

© INRA and Springer-Verlag France SAS 2017

Authors and Affiliations

  • María Castaño-Díaz
    • 1
  • Pedro Álvarez-Álvarez
    • 1
  • Brian Tobin
    • 2
  • Maarten Nieuwenhuis
    • 2
  • Elías Afif-Khouri
    • 1
  • Asunción Cámara-Obregón
    • 1
  1. 1.GIS-Forest Research Group, Department of Organism and Systems BiologyUniversity of OviedoMieresSpain
  2. 2.UCD Forestry, Agriculture and Food Science CentreUniversity College DublinDublin 4Ireland

Personalised recommendations