Annals of Forest Science

, 74:60

Flammability of some companion species in cork oak (Quercus suber L.) forests

  • Belkheir Dehane
  • Carmen Hernando
  • Mercedes Guijarro
  • Javier Madrigal
Original Paper

Abstract

Key message

The high flammability of some companion species inQuercus suberforests, estimated in laboratory tests, could potentially generate an increase in fire vulnerability and in fire risk.

Context

Recurrent wildfire is one of the main causes of forest degradation, especially in the Mediterranean region. Increased fire frequency and severity due to global change could reduce the natural resilience of cork oak to wildfire in the future. Hence, it is important to evaluate the flammability of companion species in cork oak forests in the particularly dry bioclimatic conditions of North Africa.

Aims

This study aimed to assess and compare flammability parameters at laboratory scale among ten companion frequent species in cork oak forests.

Methods

Fuel samples were collected in a cork oak (Quercus suber L) forest in the southern part of the mountains of Tlemcen (Western Algeria). A series of flammability tests were carried out using a Mass Loss Calorimeter device (FTT ®). A cluster analysis to classify flammability of the selected species was conducted using the K-means algorithm.

Results

The results revealed differences in the four flammability parameters (ignitability, sustainability, combustibility and consumability), in both fresh and dried fine fuel samples from Quercus suber, Pinus halepensis, Quercus ilex, Quercus faginea, Erica arborea, Arbutus unedo, Pistacia lentiscus, Calicotome spinosa, Juniperus oxycedrus and Tetraclinis articulata. Application of the K-means clustering algorithm showed that C. spinosa, T. articulata, J. oxycedrus and P. halepensis are highly flammable because of their high combustibility and sustainability.

Conclusion

The findings identify species that could potentially increase the vulnerability of cork oak forests to forest fires.

Keywords

Fire risk Fuel moisture content Mass loss calorimeter Mediterranean basin Algeria 

References

  1. Alessio GA, Peñuelas J, Llusià J, Ogaya R, Estiarte M (2008) Influence of water and terpenes on flammability in some dominant Mediterranean species. Int J Wildland Fire 17(2):274–286CrossRefGoogle Scholar
  2. Anderson HE (1970) Forest fuel ignitibility. Fire Technol 6(4):312–319CrossRefGoogle Scholar
  3. Babrauskas V, Peacock RD (1992) Heat release rate: the single most important variable in fire hazard. Fire Saf J 8(3):255–272CrossRefGoogle Scholar
  4. Babrauskas V (2006) Effective heat of combustion for flaming combustion of conifers. Can J For Res 36:659–663CrossRefGoogle Scholar
  5. Bekdouche F (2009) Evolution après feu de l’ecosysteme suberaie de Kabylie (Nord Algerien). Thèse Doc. Es. Sci. Agr, Univ. Tizi Ouzou, 137 ppGoogle Scholar
  6. Bernal C (1999) Guía de las plantas del alcornocal. Dpto. Recursos Naturales Renovables, Instituto CMC, Junta de Extremadura. Artes Gráficas Boysu, S.l., Mérida (Spain)Google Scholar
  7. Bishop C (1995) Neural networks for pattern recognition. Oxford University Press, Oxford, 482 ppGoogle Scholar
  8. Bouhraoua RT (2003) Situation sanitaire de quelques forêts de chêne liège de l’ouest algérien. Etude particulière des problèmes posés par les insectes. Thèse. Doct. Dept. Forest. Fac. Sci. Univ, Tlemcen, 267 ppGoogle Scholar
  9. Bugalho MN, Caldeira MC, Pereira JS, Aronson J, Pausas JG (2011) Human-shaped cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Envir 9:278–286CrossRefGoogle Scholar
  10. Cardillo E, Bernal C, Encinas M (2007) El alcornocal y el fuego. ICMC. ISBN/978-84-612-0002-3. 91 ppGoogle Scholar
  11. Catry FX, Moreira M, Pausas JG, Fernandes PM, Rego F, Cardillo E, Curt T (2012) Cork oak vulnerability to fire: the role of bark harvesting, tree characteristics and abiotic factors. PLoS One 7(6):e39810. doi:10.1371/journal.pone 0039810 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chetehouna K, Barboni T, Zarguili I, Leoni E, Simeoni A, Fernández-Pello AC (2009) Investigation of the emission of VOCs from heated vegetation and their potential to cause accelerating forest fire. Combust Sci Technol 181(10):1273–1288CrossRefGoogle Scholar
  13. Chetehouna K, Courty L, Garo JP, Viegas DX, Fernández-Pello C (2014) Flammability limits of biogenic volatile organic compounds emitted by fire-heated vegetation (Rosmarinus officinalis) and their potential link with accelerating forest fires in canyons: a Froude-scaling approach. J Fire Sci 32(4):316–327CrossRefGoogle Scholar
  14. Ciccioli P, Centritto M, Loreto F (2014) Biogenic volatile organic compound emissions from vegetation fires. Plant Cell Environ 37:1810–1825CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cruz MG, Butler BW, Viegas DX, Palheiro P (2011) Characterization of flame radiosity in shrubland fires. Combust flame 158:1970–1976CrossRefGoogle Scholar
  16. Deeming JE, Brown JK (1975) Fuel models in the National Fire-Danger Rating System. J For 73:347–350Google Scholar
  17. Dehane B, Madrigal J, Hernando C, Bouhraoua R, Guijarro M (2015) New bench-scale protocols for characterizing bark flammability and fir e resistance in trees: application to Algerian cork. J Fire Sci 33(3):202–217CrossRefGoogle Scholar
  18. Della Rocca G, Hernando C, Madrigal J, Danti R, Moya J, Guijarro M, Pecchioli A, Moya B (2015) Possible land management uses of common cypress to reduce wildfire initiation risk: a laboratory study. J Environ Manag 159(15):68–77CrossRefGoogle Scholar
  19. DGF (2014) Bilan des incendies en Algérie. 5 ppGoogle Scholar
  20. Dimitrakopoulos AP (2001) A statistical classification of Mediterranean species based on their flammability components. Int J Wildland Fire 10(2):113–118CrossRefGoogle Scholar
  21. Dimitrakopoulos AP, Mitsopoulos ID, Kaliva A (2013) Short communication. Comparing flammability traits among fire-stricken (low elevation) and non fire-stricken (high elevation) conifer forest species of Europe: a test of the Mutch hypothesis. For Syst 22(1):134–137Google Scholar
  22. Elvira LM, Hernando C (1989) Inflamabilidad y energía de las especies de sotobosque: Estudio piloto con aplicación a los incendios forestales. Colección Monografías INIA, Madrid, 99 ppGoogle Scholar
  23. Engstrom JD, Butler JK, Smith SG, Baxter LL, Fletcher TH, Weise DR (2004) Ignition behavior of live California chaparral leaves. Combust Sci Technol 176(9):1577–1591CrossRefGoogle Scholar
  24. Etlinger MG, Beall FC (2004) Development of a laboratory protocol for fire performance of landscape plants. Int J Wildland Fire 13:479–488CrossRefGoogle Scholar
  25. Fares S, Bajocco S, Salvati L, Camarretta N, Dupuy JL, Xanthopoulos G, Guijarro M, Madrigal J, Hernando C, Corona P (2017) Characterizing potential wildland fire fuel in live vegetation in the Mediterranean region. Ann For Sci 74:1. doi:10.1007/s13595-016-0599-5 CrossRefGoogle Scholar
  26. Fernandes P, Cruz MG (2012) Plant flammability experiments offer limited insight into vegetation-fire dynamics interactions. New Phytol 194(3):606–609CrossRefPubMedGoogle Scholar
  27. Finney MA, Cohen JD, Forthofer JM, McAllister SS, Gollner MJ, Gorham DJ, Saito K, Akafuah NK, Adam BA, English JD (2015) Role of buoyant flame dynamics in wildfire spread. Proc Natl Acad Sci 112(32):9833–9838CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fletcher TH, Pickett BM, Smith SG, Spittle GS, Woodhouse MM, Haake E, Weise DR (2007) Effects of moisture on ignition behavior of moist California chaparral and Utah leaves. Combust Sci Technol 179(6):1183–1203CrossRefGoogle Scholar
  29. Ganteaume A, Jappiot M, Lampin C, Guijarro M, Hernando C (2013) Flammability of some ornamental species in wildland–urban interfaces in southeastern France: laboratory assessment at particle level. Environ Manag 52(2):467–480CrossRefGoogle Scholar
  30. Hachmi M, Sesbou A, Benjelloun H, El Handouz N, Bouanane F (2011) A simple technique to estimate the flammability index of Moroccan forest fuels. J Combust Article ID 263531:11 ppGoogle Scholar
  31. Jervis FX, Rein G (2016) Experimental study on the burning behaviour of Pinus halepensis needles using small-scale fire calorimetry of live, aged and dead samples. Fire Mater 40:385–395CrossRefGoogle Scholar
  32. Larit F, Benyhaia S, Benayache S, Benayache F, León F, Brouard I, Bermijo J (2012) Flavonoids from Calycotome spinosa (L.) Lamk. Int J Med Arom Plants 2(1):34–37Google Scholar
  33. Liodakis S, Kakardakis T, Tzortzakou S, Tsapara V (2008) How to measure the particle ignitability of forest species by TG and LOI. Thermoch Acta 477(1–2):16–20CrossRefGoogle Scholar
  34. Madrigal J, Hernando C, Guijarro M, Díez C, Marino E, De Castro AJ (2009) Evaluation of forest fuel flammability and combustion properties with an adapted mass loss calorimeter device. J Fire Sci 27:323–342CrossRefGoogle Scholar
  35. Madrigal J, Guijarro M, Hernando C, Díez C, Marino EE (2011) Effective heat of combustion for flaming combustion of Mediterranean forest fuels. Fire Technol 47(2):461–474CrossRefGoogle Scholar
  36. Madrigal J, Hernando C, Guijarro M (2013) A new bench-scale methodology for evaluating flammability of live forest fuels. J Fire Sci 31(2):131–142CrossRefGoogle Scholar
  37. Martin RE, Gordon DA, Gutierrez MA, Lee DS, Molina DE, Schroeder RA, Sapsis DB, Stephens SL, Chambers M (1994) Assessing the flammability of domestic and wildland vegetation. Proceedings of the 12th conference on fire and Forest meteorology, Society of American Foresters, Bethesda, MD, Jekyll Island, GA, 26–28 October, pp 130–137Google Scholar
  38. Martin RE, Gordon DA, Gutierrez ME, Lee DS, Molina DM, Schroeder RA, Sapsis DB, Stephens SL, Chambers M (1994) Assessing the flammability of domestic and wildland vegetation. In ‘Proceedings of the 12th Conference on Fire and Forest Meteorology’, 26–28 October 1993, Jekyll Island, GA. pp. 130–137 (Society of American Foresters: Bethesda, MD)Google Scholar
  39. McAllister S, Grenfel I, Hadlow A, Jolly WM, Finney M, Cohen J (2012) Piloted ignition of live forest fuels. Fire Safety Journal 51: 133-142Google Scholar
  40. McAllister S, Weise DR (2017) Effects of season on ignition of live wildland fuels using the FIST apparatus. Combust Sci Technol 189(2):231–247CrossRefGoogle Scholar
  41. Mebirouk-Boudechiche L, Cherif M, Sammar F (2014) Teneurs en composés primaires et secondaires des feuilles d’arbustes fourragers de la région humide d’Algérie. Revue Méd Vét 165(11–12):344–352Google Scholar
  42. Minker C (2013) 200 plantes qui veulent du bien. Edition Larousse, Paris, 448 ppGoogle Scholar
  43. Molina JR, Martín T, Rodríguez y Silva F, Herrera MA (2017) The ignition index based on flammability of vegetation improves planning in the wildland-urban interface: a case study in Southern Spain. Landsc Urban Plan 158:129–138CrossRefGoogle Scholar
  44. Moritz MA, Batllori E, Bradstock RA, Malcolm Gill A, Handmer J, Hessburg PF, Leonard J, McCaffrey S, Odion DC, Schoennagel T, Syphard AD (2014) Learning to coexist with wildfire. Nature 515:58–66CrossRefPubMedGoogle Scholar
  45. Ormeño E, Céspedes B, Sánchez IA, Velasco-García A, Moreno JM, Fernandez C, Baldy V (2009) The relationship between terpenoids and flammability of leaf litter. For Ecol Manag 257:471–482CrossRefGoogle Scholar
  46. Papió C, Trabaud L (1990) Structural characteristics of fuel components of five Mediterranean shrubs. For Ecol Manag 35(3–4):249–259CrossRefGoogle Scholar
  47. Pasalodos-Tato M, Ruiz-Peinado R, del Río M, Montero G (2015) Shrub biomass accumulation and growth rate models to quantify carbon stocks and fluxes for the Mediterranean region. Eur J Forest Res 134(3):537–553CrossRefGoogle Scholar
  48. Pausas JG, Pereira JS, Aronson J (2009) The tree. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the age. Island Press, Washington DC, pp 11–23Google Scholar
  49. Pausas JG, Alessio GA, Moreira B, Segarra-Moragues JG (2016) Secondary compounds enhance flammability in a Mediterranean plant. Oecologia 180:103–110Google Scholar
  50. Pausas JG, Keeley JE, Schwilk DW (2017) Flammability as an ecological and evolutionary driver. J Ecol 105:289–297CrossRefGoogle Scholar
  51. Peñuelas J, Llusia J (2003) BVOCs: plant defense against climate warming? Trends Plant Sci 8:1360–1385CrossRefGoogle Scholar
  52. Pereira P, Fonseca M (2003) Nature vs. nurture: the making of the montado ecosystem. Conserv Ecol 7(3):7CrossRefGoogle Scholar
  53. Pickett BM, Isackson C, Wunder R, Fletcher TH, Butler BW, Weise DR (2010) Experimental measurements during combustion of moist individual foliage samples. Int J Wildland Fire 19(2):153–162CrossRefGoogle Scholar
  54. Schwilk DW (2015) Dimensions of plant flammability. New Phytol 206(2):486–488CrossRefPubMedGoogle Scholar
  55. Valette JC (1990) Inflammabilités des espèces forestières méditerranéennes, conséquences sur la combustibilitédes formations forestières. Revue Forestière Française 42:76–92CrossRefGoogle Scholar
  56. Valette JC (2007) EUFIRELAB Euro-Mediterranean Wildland Fire Laboratory, a wall-less Laboratory for Wildland Fire Sciences and Technologies in the Euro-Mediterranean Region. Wildfire International Conference (Seville, Spain 2007)Google Scholar
  57. Viegas DX, Piñol J, Viegas MT, Ogaya R (2001) Estimating live fine fuels moisture content using meteorologically-based indices. Int J Wildland Fire 10:223–240CrossRefGoogle Scholar
  58. Viegas DX, Simeoni A (2011) Eruptive behaviour of forest fires. Fire Technol 47:303–320CrossRefGoogle Scholar
  59. Weise DR, White RH, Beall FC, Etlinger M (2005) Use of the cone calorimeter to detect seasonal differences in selected combustion characteristics of ornamental vegetation. Int J Wildland Fire 14:321–338CrossRefGoogle Scholar
  60. White RH, Zipperer WC (2010) Testing and classification of individual plants for fire behaviour: plant selection for the wildland–urban interface. Int J Wildland Fire 19:213–227CrossRefGoogle Scholar
  61. WWF (2007) Beyond cork—a wealth of resources for people and nature. (Berrahmouni N, Escuté X, Regato P, Stein C Eds.) World Wide Fund for Nature Madrid. 116 ppGoogle Scholar
  62. Yashwanth BL, Shotorban B, Mahalingam S, Weise DR (2015b) An investigation of the influence of heating modes on ignition and pyrolysis of woody wildland fuel. Combust Sci Technol 187:780–796CrossRefGoogle Scholar
  63. Yashwanth BL, Shotorban B, Mahalingam S, Lautenberger CW, Weise DR (2015a) A numerical investigation of the effect of radiation and moisture content on pyrolysis and combustion of live fuels. Combust Flame 163:301–316CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS 2017

Authors and Affiliations

  1. 1.Faculty SNV-STU, Department of Forest ResourcesUniversity Aboubekr Belkaid-TlemcenTlemcenAlgeria
  2. 2.INIA, Forest Research Centre, Department of Silviculture and Forest Management, Forest Fire LaboratoryMadridSpain
  3. 3.iuFOR, Sustainable Forest Management Forest Institute UVa-INIAPalenciaSpain

Personalised recommendations