Annals of Forest Science

, 74:57

The potential of Eucalyptus plantations to restore degraded soils in semi-arid Morocco (NW Africa)

  • Mohamed Boulmane
  • Hayat Oubrahim
  • Mohammed Halim
  • Mark R. Bakker
  • Laurent Augusto
Original Paper


Key message

Short-rotation forestry using eucalyptus in degraded oak forests in the semi-arid area of NW Morocco can be a useful strategy to avoid further degradation and carbon loss from this ecosystem, but it might be constrained by nutrient and water supply in the long term.


Land degradation and deforestation of natural forests are serious issues worldwide, potentially leading to altered land use and carbon storage capacity.


Our objectives were to investigate if short-rotation plantations can restore carbon pools of degraded soils, without altering soil fertility.


Carbon and nutrient pools in above- and below-ground biomass and soils were assessed using stand inventories, harvested biomass values, allometric relationships and selective sampling for chemical analyses.


Carbon pools in the total ecosystem were low in the degraded land and in croplands (6–13 Mg ha−1) and high in forests (66–94 in eucalyptus plantations; 86–126 in native forests). The soil nutrient status of eucalyptus stands was intermediate between degraded land and native forests and increased over time after eucalyptus introduction. All harvest scenarios for eucalyptus are likely to impoverish the soil but, for the moment, the soil nutrient status has not been affected.


Afforestation of degraded land with eucalyptus can be a useful restoration tool relative to carbon storage and soil fertility, provided that non-intensive forestry is applied.


Afforestation Carbon pools Soil nutrients Cork oak Eucalyptus 

Supplementary material

13595_2017_652_MOESM1_ESM.docx (2.1 mb)
Online Resource 1(DOCX 2107 kb)
13595_2017_652_MOESM2_ESM.docx (14 kb)
Online Resource 2(DOCX 14 kb)
13595_2017_652_MOESM3_ESM.docx (111 kb)
Online Resource 3(DOCX 111 kb)
13595_2017_652_MOESM4_ESM.docx (22 kb)
Online Resource 4(DOCX 17 kb)
13595_2017_652_MOESM5_ESM.docx (16 kb)
Online Resource 5(DOCX 16 kb)


  1. Achat DL, Deleuze C, Landmann G, Pousse N, Ranger J, Augusto L (2015a) Quantifying consequences of removing harvesting residues on forest soils and tree growth—a meta-analysis. For Ecol Manag 348:124–141. doi:10.1016/j.foreco.2015.03.042 CrossRefGoogle Scholar
  2. Achat DL, Fortin M, Landmann G, Ringeval B, Augusto L (2015b) Forest soil carbon is threatened by intensive biomass harvesting. Sci Rep 5:15991. doi:10.1038/srep15991 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adhikari K, Hartemink AE (2016) Linking soils to ecosystem services—a global review. Geoderma 262:101–111. doi:10.1016/j.geoderma.2015.08.009 CrossRefGoogle Scholar
  4. Augusto L, Bert D (2005) Estimating stemwood nutrient concentration with an increment borer: a potential source of error. Forestry 78:451–455. doi:10.1093/forestry/cpi041 CrossRefGoogle Scholar
  5. Augusto L, Crampon N, Saur E, Bakker MR, Pellerin S, de Lavaissiere C, Trichet P (2005) High rates of nitrogen fixation of Ulex species in the understory of maritime pine stands and the potential effect of phosphorus fertilization. Can J For Res 35:1183–1192. doi:10.1139/x05-054 CrossRefGoogle Scholar
  6. Augusto L, Meredieu C, Bert D, Trichet P, Porte A, Bosc A, Lagane F, Loustau D, Pellerin S, Danjon F, Ranger J, Gelpe J (2008) Improving models of forest nutrient export with equations that predict the nutrient concentration of tree compartments. Ann For Sci 65. doi:10.1051/forest:2008059
  7. Augusto L, Bakker MR, De Lavaissiere C, Jordan-Meille L, Saur E (2009) Estimation of nutrient content of woody plants using allometric relationships: quantifying the difference between concentration values from the literature and actuals. Forestry 82:463–477. doi:10.1093/forestry/cpp019 CrossRefGoogle Scholar
  8. Augusto L, Bakker MR, Morel C, Meredieu C, Trichet P, Badeau V, Arrouays D, Plassard C, Achat DL, Gallet-Budynek A, Merzeau D, Canteloup D, Najar M, Ranger J (2010) Is ‘grey literature’ a reliable source of data to characterize soils at the scale of a region? A case study in a maritime pine forest in southwestern France. Eur J Soil Sci 61:807–822. doi:10.1111/j.1365-2389.2010.01286.x CrossRefGoogle Scholar
  9. Augusto L, Achat DL, Bakker MR, Bernier F, Bert D, Danjon F, Khlifa R, Meredieu C, Trichet P (2015) Biomass and nutrients in tree root systems—sustainable harvesting of an intensively managed Pinus pinaster (Ait.) planted forest. Glob Change Biol Bioenergy 7:231–243. doi:10.1111/gcbb.12127 CrossRefGoogle Scholar
  10. Barcena TG, Kiaer LP, Vesterdal L, Stefansdottir HM, Gundersen P, Sigurdsson BD (2014) Soil carbon stock change following afforestation in northern Europe: a meta-analysis. Glob Chang Biol 20:2393–2405. doi:10.1111/gcb.12576 CrossRefPubMedGoogle Scholar
  11. Bargali SS, Singh RP, Singh SP (1992a) Structure and function of an age series of eucalypt plantations in central Himalaya.2. Nutrient dynamics. Ann Bot 69:413–421CrossRefGoogle Scholar
  12. Bargali SS, Singh SP, Singh RP (1992b) Structure and function of an age series of eucalypt plantations in central Himalaya.1. Dry-matter dynamics. Ann Bot 69:405–411CrossRefGoogle Scholar
  13. Bastin JF, Berrahmouni N, Grainger A, Maniatis D, Mollicone D, Moore R, Patriarca C, Picard N, Sparrow B, Abraham EM, Aloui K, Atesoglu A, Attore F, Bassuullu C, Bey A, Garzuglia M, Garcia-Montero LG, Groot N, Guerin G, Laestadius L, Lowe AJ, Mamane B, Marchi G, Patterson P, Rezende M, Ricci S, Salcedo IH, Diaz ASP, Stolle F, Surappaeva V, Castro R (2017) The extent of forest in dryland biomes. Science 356:635–638CrossRefPubMedGoogle Scholar
  14. Bellfontaine R, Raggabi M, Nanson A (1979) Expérience internationale d’origines d’Eucalyptus camaldulensis dehn. Dispositif de Sidi Slimane (Maroc). Annales de Recherche Forestière du Maroc 19:339–398Google Scholar
  15. Benabid B, Fennane M (1999) Ecosystèmes forestiers: structure, beauté et diversité: principales formations forestières. In: Margada (ed) Le grand livre de la forêt marocaine. Sprimont, Belgique, pp 71–93Google Scholar
  16. Berthrong ST, Jobbagy EG, Jackson RB (2009) A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl 19:2228–2241. doi:10.1890/08-1730.1 CrossRefPubMedGoogle Scholar
  17. Billaux P, Bryssine G (1967) Soils of Morocco [in French]. Cahiers de la Recherche Agronomique 24:59–101Google Scholar
  18. Boca A, Van Miegroet H, Gruselle MC (2014) Forest overstory effect on soil organic carbon storage: a meta-analysis. Soil Sci Soc Am J 78:S35–S47. doi:10.2136/sssaj2013.08.0332nafsc CrossRefGoogle Scholar
  19. Bremner JM (1960) Determination of nitrogen in soil by the Kjeldahl method. J Agric Sci 55:11–33CrossRefGoogle Scholar
  20. Canadell J, Jackson RB, Ehleringer J, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595CrossRefPubMedGoogle Scholar
  21. Chanie T, Collick AS, Adgo E, Lehmann CJ, Steenhuis TS (2013) Eco-hydrological impacts of eucalyptus in the semi humid Ethiopian highlands: the Lake tana plain. J Hydrol Hydromech 61:21–U107. doi:10.2478/johh-2013-0004 CrossRefGoogle Scholar
  22. Christina M, Laclau JP, Goncalves JLM, Jourdan C, Nouvellon Y, Bouillet JP (2011) Almost symmetrical vertical growth rates above and below ground in one of the world's most productive forests. Ecosphere 2:art.27. doi:10.1890/Es10-00158.1 CrossRefGoogle Scholar
  23. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618. doi:10.1126/science.1231923 CrossRefPubMedGoogle Scholar
  24. Cook RL, Binkley D, Stape JL (2016) Eucalyptus plantation effects on soil carbon after 20 years and three rotations in Brazil. For Ecol Manag 359:92–98. doi:10.1016/j.foreco.2015.09.035 CrossRefGoogle Scholar
  25. Danjon F, Reubens B (2008) Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant Soil 303:1–34. doi:10.1007/s11104-007-9470-7 CrossRefGoogle Scholar
  26. De Schrijver A, Vesterdal L, Hansen K, De Frenne P, Augusto L, Achat DL, Staelens J, Baeten L, De Keersmaeker L, De Neve S, Verheyen K (2012) Four decades of post-agricultural forest development have caused major redistributions of soil phosphorus fractions. Oecologia 169:221–234. doi:10.1007/s00442-011-2185-8 CrossRefPubMedGoogle Scholar
  27. Du H, Zeng FP, Peng WX, Wang KL, Zhang H, Liu L, Song TQ (2015) Carbon storage in a eucalyptus plantation chronosequence in southern China. Forests 6:1763–1778. doi:10.3390/f6061763 CrossRefGoogle Scholar
  28. F.R.A. (2015) Rapport d'évaluation des ressources forestières au Maroc. FAO, RomaGoogle Scholar
  29. FAO/IUSS (2006) World reference base for soil resources: a framework for international classification, correlation and communication. FAO, RomeGoogle Scholar
  30. Ferreira V, Koricheva J, Pozo J, Graca MAS (2016) A meta-analysis on the effects of changes in the composition of native forests on litter decomposition in streams. For Ecol Manag 364:27–38. doi:10.1016/j.foreco.2016.01.002 CrossRefGoogle Scholar
  31. Gomez-Garcia E, Dieguez-Aranda U, Cunha M, Rodriguez-Soalleiro R (2016) Comparison of harvest-related removal of aboveground biomass, carbon and nutrients in pedunculate oak stands and in fast-growing tree stands in NW Spain. For Ecol Manag 365:119–127. doi:10.1016/j.foreco.2016.01.021 CrossRefGoogle Scholar
  32. González-García M, Hevia A, Majada J, Rubiera F, Barrio-Anta M (2015) Nutritional, carbon and energy evaluation of Eucalyptus nitens short rotation bioenergy plantations in northwestern Spain. Iforest 9:303–310. doi:10.3832/ifor1505-008 CrossRefGoogle Scholar
  33. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360. doi:10.1046/j.1354-1013.2002.00486.x CrossRefGoogle Scholar
  34. Hatton PJ, Castanha C, Torn MS, Bird JA (2015) Litter type control on soil C and N stabilization dynamics in a temperate forest. Glob Chang Biol 21:1358–1367. doi:10.1111/gcb.12786 CrossRefPubMedGoogle Scholar
  35. Hernández J, del Pino A, Hitta M, Lorenzo M (2016a) Management of forest harvest residues affects soil nutrient availability during reforestation of Eucalyptus grandis. Nutr Cycl Agroecosyst 105:141–155. doi:10.1007/s10705-016-9781-2 CrossRefGoogle Scholar
  36. Hernández J, del Pino A, Vance ED, Califra Á, Del Giorgio F, Martínez L, González-Barrios P (2016b) Eucalyptus and Pinus stand density effects on soil carbon sequestration. For Ecol Manag 368:28–38. doi:10.1016/j.foreco.2016.03.007 CrossRefGoogle Scholar
  37. Herrero C, Juez L, Tejedor C, Pando V, Bravo F (2014) Importance of root system in total biomass for Eucalyptus globulus in northern Spain. Biomass Bioenergy 67:212–222. doi:10.1016/j.biombioe.2014.04.023 CrossRefGoogle Scholar
  38. Hopmans P, Stewart HTL, Flinn DW (1993) Impacts of harvesting on nutrients in a eucalypt ecosystem in southeastern Australia. For Ecol Manag 59:29–51. doi:10.1016/0378-1127(93)90069-Y CrossRefGoogle Scholar
  39. Hracherrass A, Berkat O, Ismaili M, De Montard FX (2013) Symbiotic fixation of nitrogen by Genista linifolia: influences of soil depth and tree cover in the cork oak forest of Mamora, Morocco [in French]. Cahiers Agric 22:124–132. doi:10.1684/agr.2013.0614 Google Scholar
  40. Jeddi K, Cortina J, Chaieb M (2009) Acacia salicina, Pinus halepensis and Eucalyptus occidentalis improve soil surface conditions in arid southern Tunisia. J Arid Environ 73:1005–1013. doi:10.1016/j.jaridenv.2009.05.005 CrossRefGoogle Scholar
  41. Johnson CE (2002) Cation exchange properties of acid forest soils of the northeastern USA. Eur J Soil Sci 53:271–282. doi:10.1046/j.1365-2389.2002.00441.x CrossRefGoogle Scholar
  42. Laclau JP, Bouillet JP, Ranger J (2000) Dynamics of biomass and nutrient accumulation in a clonal plantation of eucalyptus in Congo. For Ecol Manag 128:181–196. doi:10.1016/S0378-1127(99)00146-2 CrossRefGoogle Scholar
  43. Laclau JP, Arnaud M, Bouillet JP, Ranger J (2001) Spatial distribution of eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients. Tree Physiol 21:129–136. doi:10.1093/treephys/21.2-3.129 CrossRefPubMedGoogle Scholar
  44. Laclau JP, Deleporte P, Ranger J, Bouilleti JP, Kazotti G (2003) Nutrient dynamics throughout the rotation of eucalyptus clonal stands in Congo. Ann Bot 91:879–892. doi:10.1093/aob/mcg093 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Laclau JP, Ranger J, Goncalves JLD, Maquere V, Krusche AV, M'Bou AT, Nouvellon Y, Saint-Andre L, Bouillet JP, Piccolo MD, Deleporte P (2010) Biogeochemical cycles of nutrients in tropical eucalyptus plantations: main features shown by intensive monitoring in Congo and Brazil. For Ecol Manag 259:1771–1785. doi:10.1016/j.foreco.2009.06.010 CrossRefGoogle Scholar
  46. Lakrikba EM (2015) The prevention of flood risks using land management in Morocco [in French]. Master report. Univ, Laval, 135 pGoogle Scholar
  47. Lamarque JF, Kiehl JT, Brasseur GP, Butler T, Cameron-Smith P, Collins WD, Collins WJ, Granier C, Hauglustaine D, Hess PG, Holland EA, Horowitz L, Lawrence MG, McKenna D, Merilees P, Prather MJ, Rasch PJ, Rotman D, Shindell D, Thornton P (2005) Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: analysis of nitrogen deposition. J Geophys Res Atmos 110:1–21. doi:10.1029/2005JD005825 Google Scholar
  48. Laouina A, Aderghal M, Al Karkouri J, Antari M, Chaker M, Laghazi Y, Machmachi J, Machouri N, Nafaa R, Naimi K, Nouira A, Sfa M (2010) The efforts for cork oak forest management and their effects on soil conservation. Forest Syst 19:263–277. doi:10.5424/fs/2010192-01320 CrossRefGoogle Scholar
  49. Leite FP, Silva IR, Novais RF, de Barros NF, Neves JCL (2010) Alterations of soil chemical properties by eucalyptus cultivation in five regions in the Rio Doce valley. Rev Bras Cienc Solo 34:821–831. doi:10.1590/S0100-06832010000300024 CrossRefGoogle Scholar
  50. Lemenih M, Olsson M, Karltun E (2004) Comparison of soil attributes under Cupressus lusitanica and Eucalyptus saligna established on abandoned farmlands with continuously cropped farmlands and natural forest in Ethiopia. For Ecol Manag 195:57–67. doi:10.1016/j.foreco.2004.02.055 CrossRefGoogle Scholar
  51. Li DJ, Niu SL, Luo YQ (2012) Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–181. doi:10.1111/j.1469-8137.2012.04150.x CrossRefPubMedGoogle Scholar
  52. Michelsen A, Lisanework N, Friis I (1993) Impacts of tree plantations in the Ethiopian highland on soil fertility, shoot and root-growth, nutrient utilization and mycorrhizal colonization. For Ecol Manag 61:299–324. doi:10.1016/0378-1127(93)90208-5 CrossRefGoogle Scholar
  53. Nogueira MA, Albino UB, Brandao-Junior O, Braun G, Cruz MF, Dias BA, Duarte RTD, Gioppo NMR, Menna P, Orlandi JM, Raimam MP, Rampazo LGL, Santos MA, Silva MEZ, Vieira FP, Torezan JMD, Hungria M, Andrade G (2006) Promising indicators for assessment of agroecosystems alteration among natural, reforested and agricultural land use in southern Brazil. Agric Ecosyst Environ 115:237–247. doi:10.1016/j.agee.2006.01.008 CrossRefGoogle Scholar
  54. Olsen SR, CV Cole, FS Watanabe, LA Dean (1954) Estimation of available phosphorus in soils by extraction with NaHCO3. US Department of Agriculture Circular, 939Google Scholar
  55. Oubrahim H (2015) Estimation and mapping of carbon stocks in the Quercus suber ecosystem of the Western Mamora forest [in French]. PhD report, University Mohammed V.Google Scholar
  56. Oubrahim H, Boulmane M, Bakker MR, Augusto L, Halim M (2016) Carbon storage in degraded cork oak (Quercus suber) forests on flat lowlands in Morocco. Iforest 9:125–137. doi:10.3832/ifor1364-008 CrossRefGoogle Scholar
  57. Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257. doi:10.1016/S0378-1127(01)00740-X CrossRefGoogle Scholar
  58. Pinheiro RC, de Deus JC, Nouvellon Y, Campoe OC, Stape JL, Aló LL, Guerrini IA, Jourdan C, Laclau JP (2016) A fast exploration of very deep soil layers by eucalyptus seedlings and clones in Brazil. For Ecol Manag 366:143–152. doi:10.1016/j.foreco.2016.02.012 CrossRefGoogle Scholar
  59. Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone - carbon response functions as a model approach. Glob Chang Biol 17:2415–2427. doi:10.1111/j.1365-2486.2011.02408.x CrossRefGoogle Scholar
  60. Poore MED, C Fries (1986) The ecological effects of eucalyptus. FAO, Forestry paper number 59, 125 p.Google Scholar
  61. Razakamanarivo RH, Razakavololona A, Razafindrakoto MA, Vieilledent G, Albrecht A (2012) Below-ground biomass production and allometric relationships of eucalyptus coppice plantation in the central highlands of Madagascar. Biomass Bioenergy 45:1–10. doi:10.1016/j.biombioe.2011.01.020 CrossRefGoogle Scholar
  62. Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512. doi:10.1146/annurev-ecolsys-102710-145034 CrossRefGoogle Scholar
  63. Ritson P, Sochacki S (2003) Measurement and prediction of biomass and carbon content of Pinus pinaster trees in farm forestry plantations, south-western Australia. For Ecol Manag 175:103–117. doi:10.1016/S0378-1127(02)00121-4 CrossRefGoogle Scholar
  64. Rocha JHT, de Moraes Gonçalves JL, Gava JL, de Oliveira Godinho T, Melo EA, Bazani JH, Hubner A, Arthur JC, Wichert MP (2016) Forest residue maintenance increased the wood productivity of a eucalyptus plantation over two short rotations. For Ecol Manag 379:1–10. doi:10.1016/j.foreco.2016.07.042 CrossRefGoogle Scholar
  65. Salomon R, Rodriguez-Calcerrada J, Zafra E, Morales-Molino C, Rodriguez-Garcia A, Gonzalez-Doncel I, Oleksyn J, Zytkowiak R, Lopez R, Miranda JC, Gil L, Valbuena-Carabana M (2016) Unearthing the roots of degradation of Quercus pyrenaica coppices: a root-to-shoot imbalance caused by historical management? For Ecol Manag 363:200–211. doi:10.1016/j.foreco.2015.12.040 CrossRefGoogle Scholar
  66. Seifan M (2009) Long-term effects of anthropogenic activities on semi-arid sand dunes. J Arid Environ 73:332–337. doi:10.1016/j.jaridenv.2008.10.009 CrossRefGoogle Scholar
  67. Singh B, Tripathi KP, Jain RK, Behl HM (2000) Fine root biomass and tree species effects on potential N mineralization in afforested sodic soils. Plant Soil 219:81–89. doi:10.1023/A:1004720826347 CrossRefGoogle Scholar
  68. Sullivan S, Rohde R (2002) On non-equilibrium in arid and semi-arid grazing systems. J Biogeogr 29:1595–1618. doi:10.1046/j.1365-2699.2002.00799.x CrossRefGoogle Scholar
  69. Tang CQ, Hou XL, Gao K, Xia TY, Duan CQ, Fu DG (2007) Man-made versus natural forests in mid-Yunnan, southwestern China: plant diversity and initial data on water and soil conservation. Mt Res Dev 27:242–249. doi:10.1659/Mrd.0732 CrossRefGoogle Scholar
  70. Temesgen D, Gonzálo J, Turrión MB (2016) Effects of short-rotation Eucalyptus plantations on soil quality attributes in highly acidic soils of the central highlands of Ethiopia. Soil Use Manag 32:210–219. doi:10.1111/sum.12257 CrossRefGoogle Scholar
  71. Turner J, Lambert M (2016) Pattern of carbon and nutrient cycling in a small eucalyptus forest catchment, NSW. For Ecol Manag 372:258–268. doi:10.1016/j.foreco.2016.04.012 CrossRefGoogle Scholar
  72. Turpault MP, Bonnaud P, Fichter J, Ranger J, Dambrine E (1996) Distribution of cation exchange capacity between organic matter and mineral fractions in acid forest soils (Vosges mountains, France). Eur J Soil Sci 47:545–556. doi:10.1111/j.1365-2389.1996.tb01854.x CrossRefGoogle Scholar
  73. Vega-Nieva DJ, Valero E, Picos J, Jimenez E (2015) Modeling the above and belowground biomass of planted and coppiced Eucalytpus globulus stands in NW Spain. Ann For Sci 72:967–980. doi:10.1007/s13595-015-0493-6 CrossRefGoogle Scholar
  74. Villamil MB, Amiotti NM, Peinemann N (2001) Soil degradation related to overgrazing in the semi-arid southern Caldenal area of Argentina. Soil Sci 166:441–452. doi:10.1097/00010694-200107000-00002 CrossRefGoogle Scholar
  75. Vörösmarty CJ, Sahagian D (2000) Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50:753–765. doi:10.1641/0006-3568(2000)050[0753:Adottw]2.0.Co;2 CrossRefGoogle Scholar
  76. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38. doi:10.1097/00010694-193401000-00003 CrossRefGoogle Scholar
  77. Wei XR, Shao MG, Gale W, Li LH (2014) Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci Rep 4:4062. doi:10.1038/srep04062 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zadworny M, Jagodzinski AM, Lakomy P, Ufnalski K, Oleksyn J (2014) The silent shareholder in deterioration of oak growth: common planting practices affect the long-term response of oaks to periodic drought. For Ecol Manag 318:133–141. doi:10.1016/j.foreco.2014.01.017 CrossRefGoogle Scholar
  79. Zhang YG, Xiao M, Dong YH, Jiang Y (2012) Determination of soil exchangeable base cations by using atomic absorption spectrophotometer and extraction with ammonium acetate. Spectrosc Spectr Anal 32:2242–2245. doi:10.3964/j.issn.1000-0593(2012)08-2242-04 Google Scholar

Copyright information

© INRA and Springer-Verlag France SAS 2017

Authors and Affiliations

  1. 1.Laboratoire de PédologieCentre de Recherche ForestièreRabatMorocco
  2. 2.Faculté des SciencesUniversité Mohammed V AgdalRabatMorocco
  3. 3.Bordeaux Sciences AgroINRA, UMR 1391 ISPAGradignanFrance

Personalised recommendations