Annals of Forest Science

, 74:52 | Cite as

Adaptive management rules for Pinus nigra Arnold ssp. salzmannii stands under risk of fire

  • José Ramón González-Olabarria
  • Jordi Garcia-Gonzalo
  • Blas Mola-Yudego
  • Timo Pukkala
Original Paper


Key message

We generate flexible management rules for black pine stands, adaptable to alternative stand management situations and entailing thinnings, final-felling, and salvage cuts, based on the results on 270 stand level optimizations.


Forest management instructions often rely on the anticipated prediction of the stand development, which poses a challenge on variable economic and environmental conditions. Instead, an alternative approach to better adapt forest management decisions to changing conditions is defining flexible rules based on thresholds that trigger management operations.


This article develops rules for the adaptive management of P. nigra stands in Catalonia (Spain) addressing the risk of fire and post-fire forest management.


The stochastic version of the simulation-optimization system RODAL was used to optimize the management of forest stands in three sites under different fire probability levels. A total of 270 optimizations were done varying site fertility, fire probability, and economic factors. The results of the optimizations were used as the basis of flexible forest management rules for adaptive stand management.


The developed management rules defined the basal area limit for thinning, the thinning intensity, the mean tree diameter at which regeneration cuttings should start, and the basal area below which a salvage cutting should be done. Fire risk was not a significant predictor of the models for thinning and final cutting rules.


The presented rules provide a flexible tool for forest management during the stand development and under changing conditions when the management objective is to maximize economic profitability of timber production.


Optimization Stochastic simulation Management rules Wildfire risk 


Compliance with ethical standards


CTFC authors acknowledge funding from MINECO (Ref. RYC-2011-08983, RYC-2013-14262, AGL2015-67293-R MINECO/FEDER) and from CERCA Programme/Generalitat de Catalunya. José Ramón González also thanks the José Castillejo program of the Ministry of Education, Culture, and Sport for facilitating the mobility grant required for the implementation of the study.


  1. Arenas-Ruiz SG, Izquierdo-Osorio S (2007) Estudio de los precios de la madera en pie de los montes gestionados por la administración forestal gallega en los años 2005 y 2006. Revista Montes 90:8–15Google Scholar
  2. Aunos A, Riba A, Blanco R (2009) Caracterización selvícola de las masas monoespecíficas de pino laricio en Cataluña. Inv Agrar-Sist Recursos Fores 18:338–349Google Scholar
  3. Bazaraa MS, Shetty CM (1979) Nonlinear programming, theory and algorithms. John Wiley & Sons, New YorkGoogle Scholar
  4. Caulfield JP (1988) A stochastic efficiency approach for determining the economic rotation of a forest stand. For Sci 34:441–457Google Scholar
  5. Englin J, Baxall P, Hauer G (2000) An empirical examination of optimal rotations in a multiple-use forest in the presence of fire risk. J Agric Res Econ 25:14–27Google Scholar
  6. Farreras V, Mavsar R (2012) Burned forest area or dead trees? A discrete choice experiment for Catalan citizens. Economía Agraria y Recursos Naturales 12:137–153. doi: 10.7201/earn.2012.02.06 CrossRefGoogle Scholar
  7. Faustmann M (1849) Calculation of the value which forest land and immature stands possess for forestry. Allg Forst Jagdztg 15:441–455Google Scholar
  8. Fernandes PM, Fernandes MM, Loureiro C (2012) Survival to prescribed fire of plantation-grown Corsican black pine in northern Portugal. Ann For Sci 69:813–820. doi: 10.1007/s13595-012-0211-6 CrossRefGoogle Scholar
  9. Ferreira L, Constantino M, Borges JG (2014) A stochastic approach to optimize maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal. Ann Oper Res 219:359–377. doi: 10.1007/s10479-011-0845-z CrossRefGoogle Scholar
  10. Garcia-Gonzalo J, Pukkala T, Borges JG (2014) Integrating fire risk in stand management scheduling. An application to maritime pine stands in Portugal. Ann Oper Res 219:379–395. doi: 10.1007/s10479-011-0908-1 CrossRefGoogle Scholar
  11. González JR, Pukkala T (2007) Characterization of forest fires in Catalonia (north-east Spain). Eur J For Res 126:421–429. doi: 10.1007/s10342-006-0164-0
  12. González JR, Pukkala T, Palahí M (2005) Optimising the management of Pinus sylvestris L. stand under risk of fire in Catalonia (northeast of Spain). Ann For Sci 62:493–501. doi: 10.1051/forest:2005054 CrossRefGoogle Scholar
  13. Gonzalez JR, Palahi M, Trasobares A, Pukkala T (2006) A fire probability model for forest stands in Catalonia (north-east Spain). Ann For Sci 63:169–176. doi: 10.1051/forest:2005109 CrossRefGoogle Scholar
  14. González JR, Trasobares A, Palahí M, Pukkala T (2007) Predicting stand damage and tree survival in burned forests in Catalonia (north-east Spain). Ann For Sci 64:733–742. doi: 10.1051/forest:2007053 CrossRefGoogle Scholar
  15. González-Olabarria JR, Palahí M, Pukkala T, Trasobares A (2008) Optimising the management of Pinus nigra Arn. stands under endogenous risk of fire in Catalonia. Inv Agrar-Sist Recursos Fores 17:10–17CrossRefGoogle Scholar
  16. Haight RG, Monserud RA (1990) Optimizing any-aged management of mixed-species stands, II. Effects of decision criteria. For Sci 36:125–144Google Scholar
  17. Hooke R, Jeeves TA (1961) “Direct search” solution of numerical and statistical problems. J Assoc Comput Mach 8:212–229. doi: 10.1145/321062.321069 CrossRefGoogle Scholar
  18. Hyytiäinen K, Haight RG (2010) Evaluation of forest management systems under risk of wildfire. Eur J For Res 129:909–919. doi: 10.1007/s10342-009-0278-2 CrossRefGoogle Scholar
  19. Hyytiäinen K, Tahvonen O, Valsta L (2005) Optimum juvenile density, harvesting and stand structure in even-aged Scots pine stands. For Sci 51:120–133Google Scholar
  20. Kuboyama H, Oka H (2000) Climate risks and age-related damage probabilities—effects on the economically optimal rotation length for forest stand management in Japan. Silva Fenn 34:155–166. doi: 10.14214/sf.637 CrossRefGoogle Scholar
  21. Lohmander P (2007) Adaptive optimization of forest management in a stochastic world. In: Weintraub A et al (eds) Handbook of operations research in natural resources. Springer, New York, pp 525–543Google Scholar
  22. Martell DL (1980) The optimal rotation of a flammable forest stand. Can J For Res 10:30–34. doi: 10.1139/x80-006 CrossRefGoogle Scholar
  23. Merlo M, Croitoru L (2005) Valuing Mediterranean forests—towards total economic value. CABI PublishingGoogle Scholar
  24. Ordóñez JL, Retana J, Espelta JM (2005) Effects of tree size, crown damage, and tree location on post-fire survival and cone production of Pinus nigra trees. For Ecol Manag 206:109–117. doi: 10.1016/j.foreco.2004.10.067 CrossRefGoogle Scholar
  25. Ordoñez JL, Molowny-Horas R, Retana J (2006) A model of the recruitment of Pinus nigra from unburned edges after large wildfires. Ecol Model 197:405–417. doi: 10.1016/j.ecolmodel.2006.03.027 CrossRefGoogle Scholar
  26. Palahí M, Grau-Corbí J (2003) Site index model and individual-tree growth and mortality models for black pine (Pinus nigra Arn.) in Catalonia (Spain). Inv Agrar-Sist Recursos Fores 12:137–148Google Scholar
  27. Palahi M, Pukkala T (2003) Optimising the management of Scots pine (Pinus sylvestris L.) stands in Spain based on individual-tree models. Ann For Sci 60:105–114. doi: 10.1051/forest:2003002 CrossRefGoogle Scholar
  28. Palahi M, Mavsar R, Gracia C, Birot Y (2008) Mediterranean forest under focus. Int For Rev 10:676–688. doi: 10.1505/ifor.10.4.676 Google Scholar
  29. Pasalodos-Tato M, Pukkala T, Castedo-Dorado F (2009) Models for the optimal management of Pinus radiata D. Don in Galicia (north-western Spain) under risk of fire. Allg Forst Jagdztg 180:238–249Google Scholar
  30. Pasalodos-Tato M, Pukkala T, Alboreca AR (2010) Optimal management of Pinus pinaster in Galicia (Spain) under risk of fire. Int J Wildland Fire 19:937–948. doi: 10.1071/wf08150 CrossRefGoogle Scholar
  31. Puerta-Piñero C, Brotons L, Coll L, González-Olabarría JR (2012) Valuing acorn dispersal and resprouting capacity ecological functions to ensure Mediterranean forest resilience after fire. Eur J For Res 131:835–844. doi: 10.1007/s10342-011-0557-6 CrossRefGoogle Scholar
  32. Pukkala T (2015) Optimizing continuous cover management of boreal forest when timber prices and tree growth are stochastic. For Ecosyst 2:1–13. doi: 10.1186/s40663-015-0028-5 CrossRefGoogle Scholar
  33. Pukkala T, Kellomäki S (2012) Anticipatory vs adaptive optimization of stand management when tree growth and timber prices are stochastic. Forestry 85:463–472. doi: 10.1093/forestry/cps043 CrossRefGoogle Scholar
  34. Pukkala T, Miina J, Kurttila M, Kolström T (1998) A spatial yield model for optimizing the thinning regime of mixed stands of Pinus sylvestris and Picea abies. Scand J For Res 13:31–42CrossRefGoogle Scholar
  35. Pukkala T, Lände E, Laiho O (2014) Stand management optimization—the role of simplifications. For Ecosyst 1:1–11. doi: 10.1186/2197-5620-1-3 CrossRefGoogle Scholar
  36. Reed WJ (1984) The effects of the risk of fire on the optimal rotation of a forest. J Environ Manag 11:180–190. doi: 10.1016/0095-0696(84)90016-0 CrossRefGoogle Scholar
  37. Reed WJ, Errico D (1985) Assessing the long-run yield of a forest stand subject to the risk of fire. Can J For Res 20:961–969. doi: 10.1139/x85-111 Google Scholar
  38. Routledge RD (1980) The effect of potential catastrophic mortality and other unpredictable events on optimal forest rotation policy. For Sci 26:389–399Google Scholar
  39. Ryan KC, Reinhardt ED (1988) Predicting postfire mortality of seven western conifers. Can J For Res 18:1291–1297. doi: 10.1139/x88-199 CrossRefGoogle Scholar
  40. Selkimäki M, González-Olabarria JR, Pukkala T (2012) Site and stand characteristics related to surface erosion occurrence in forests of Catalonia (Spain). Eur J For Res 131:739–746. doi: 10.1007/s10342-011-0545-x CrossRefGoogle Scholar
  41. Sessions J, Bettinger P, Buckman R, Newton M, Hamann J (2004) Hastening the return of complex forests following fire, the consequences of delay. J For 10:38–45Google Scholar
  42. Snowdon P (1991) A ratio estimator for bias correction in logarithmic regressions. Can J For Res 21:720–724CrossRefGoogle Scholar
  43. Solano JM, Fernández J, Palahí M, Pukkala T, Prokofieva I (2007) ¿Es rentable la gestión forestal en Cataluña? Economistas 113:116–124Google Scholar
  44. Zubizarreta-Gerendiain A, Pukkala T, Kellomäki S, Garcia-Gonzalo J, Ikonen VP, Peltola H (2015) Effects of climate change on optimised stand management in the boreal forests of central Finland. Eur J For Res 134:273–280. doi: 10.1007/s10342-014-0849-8 CrossRefGoogle Scholar
  45. Zubizarreta-Gerendiain A, Pukkala T, Peltola H (2016) Effects of wood harvesting and utilisation policies on the carbon balance of forestry under changing climate, a Finnish case study. Forest Policy Econ 62:168–176. doi: 10.1016/j.forpol.2015.08.007 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS 2017

Authors and Affiliations

  • José Ramón González-Olabarria
    • 1
  • Jordi Garcia-Gonzalo
    • 1
    • 2
  • Blas Mola-Yudego
    • 3
    • 4
  • Timo Pukkala
    • 4
  1. 1.Forest Science Centre of CataloniaSolsonaSpain
  2. 2.School of Agriculture, Forest Research CentreUniversity of LisbonLisbonPortugal
  3. 3.Department of Forest and ClimateNorwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway
  4. 4.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations