Annals of Forest Science

, 74:56

The extent of historic translocation of Norway spruce forest reproductive material in Europe

Review Paper


Key message

Norway spruce seed has been traded extensively for at least three centuries throughout the natural distribution range in Europe and beyond. However, our knowledge about these transfers is limited. Historic data are essential tools to trace back human-mediated gene flow and for interpretation of recent genetic studies.


Human-mediated gene flow can potentially have a major impact on the genetic composition of forest tree populations, yet our knowledge about seed sources used within the current species’ range is still limited. Norway spruce is one of the most important coniferous species in European forestry, and data drawing conclusions about the genetic composition of current populations are vital with regard to gene conservation and sustainable forest management. Because molecular data are not available on a more detailed scale, historic records provide crucial information about translocations.


Our aim is to provide the first pan-European review on Norway spruce translocations from the seventeenth until the twentieth century.


We analysed historic and recent literature compiling information on the cultivation and transfer of Norway spruce reproductive material. Historic records are compared with recent molecular studies.


Seed exchanges have profoundly altered the native genetic population structure of Norway spruce. Especially, Central European seeds have been used throughout and beyond the natural distribution area. Figures illustrating the historic plantings in Europe are provided.


Recent molecular data reveal persisting effects of past translocations. Historical records can be extremely useful for providing information about autochthony and thus guide gene conservation strategies and explain the performance of extant populations.


Picea abies Afforestation Historic seed transfer Seed trade 

Supplementary material

13595_2017_644_MOESM1_ESM.eps (175.1 mb)
ESM 1(EPS 179338 kb)
13595_2017_644_MOESM2_ESM.xlsx (100 kb)
ESM 2(XLSX 100 kb)


  1. Aarrestad PA, Myking T, Stabbetorp OE, Tollesfrud MM (2014) Foreign Norway spruce (Picea abies) provenances in Norway and effects on biodiversity. Nina Rep 1075Google Scholar
  2. Aitken SN, Bemmels JB (2016) Time to get moving: assisted gene flow of forest trees. Evol Appl 9:271–290PubMedCrossRefGoogle Scholar
  3. Almäng A (1996) Utländska gran- och tallprovenienser i svenskt skogsbruk: Foreign provenances of Norway spruce and Scots pine in Swedish forestry. Arbetsrapport/Sveriges lantbruksuniversitet, Institutionen för skoglig genetik och växtfysiolog 54Google Scholar
  4. Bałut S (1962) Zmienność niektórych cech w populacjach modrzewi z gor świetokrzyskich, Beskidów i Sudetów jako podstawa wyrózniania gospodarczo cennych ekotypów. Acta Agrar Silv Ser Lesn (Krak) 2:3–43Google Scholar
  5. Bardecki A (1909) Zużytkowanie krajowych nasion leśnych. Sylwan 11:30–34Google Scholar
  6. Bartoli M (2003) La dynamique naturelle de l’epicea (Picea abies [L.] Karst..) dans les pyrenees françaises. Acta Bot Barcinon 49:281–290Google Scholar
  7. Bartoli M, Demesure-Musch B (2003) Plus d’un siècle d’intervention humaine dans les flux des gènes des pin à crochets et sapin français. Rev For Fr 55:546–556Google Scholar
  8. Bendix B (2008) Die Geschichte der Forstpflanzenzucht in Deutschland von ihren Anfängen bis zum Ausgang des 19. Jahrhunderts, Kessel, Remagen-OberwinterGoogle Scholar
  9. Berard A (1959) Les reboisements artificiels dans les forêts vosgiennes au XIX siêcle. Rev For Fr 5:371–375CrossRefGoogle Scholar
  10. Bergmann F (1965) Moving spruce provenances in central Norrland. Arsb Foren Skogstradsforadl Stockholm 1964:85–103Google Scholar
  11. Bergmann F (1977) Identification of forest seed origin by means of isoenzyme gene frequencies. EEC Symposium of Forest Tree Biochenstry, Session Document 6:151–162Google Scholar
  12. Blahá J (undated) Spruce monocultures in the Czech Republic—the Sumuva Mountains case studies. In A compilation of testimonies on the negative impact of large-scale monoculture tree plantations—prepared for the sixth conference of the parties of the framework convention on climate change. A friend of the earth international, pp 38–45Google Scholar
  13. Borchers K (1967) Niedersachsen; Fichte, Picea abies [L.] Karst. In: Puchert H (ed) Wertvolle Herkünfte forstlicher Baumarten in der Bundesrepublik Deutschland, 1st edn. Bayerischer Landwirtschaftsverlag, München, Basel, Wien, pp 169–187Google Scholar
  14. Bouvarel P (1958) Les repeuplements artificiels—consequences d’ordre génétique. Schweiz Z Forstwes 109:524–536Google Scholar
  15. Bouvarel P (1965) Die Französischen Fichtenherkünfte für Gebirgsaufforstungen. In: Schmidt-Vogt H (ed) Forstsamengewinnung und Pflanzenzucht für das Hochgebirge. BLV, München, pp 41–53Google Scholar
  16. Bradshaw RHW (2004) Past anthropogenic influence on European forests and some possible genetic consequences. For Ecol Manag 197:203–212CrossRefGoogle Scholar
  17. Bridle JR, Polechova J, Vines TH (2009) Limits to adaptation and patterns of diversity. In: Butlin RK, Bridle JR, Schluter D (eds) Speciation and patterns of diversity, 1st edn. Cambridge University Press, Cambridge, pp 77–102CrossRefGoogle Scholar
  18. Brown JC (1880) Reboisement in France. C.K. Kegan Paul & Co, LondonGoogle Scholar
  19. Budeanu M, Şofletea N, Pârnutâ G (2012) Testing Romanian seed sources of Norway spruce (Picea abies): results on growth traits and survival at age 30. Ann For Res 55:43–52Google Scholar
  20. Chen J, Källman T, Ma X, Gyllenstrand N, Zaina G, Morgante M, Bousquet J, Eckert A, Wegrzyn J, Neale D, Lagercrantz ML (2012) Disentangling the roles of history and local selection in shaping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies). Genetics 191:865–881PubMedPubMedCentralCrossRefGoogle Scholar
  21. Collignon AM, Van de Sype H, Favre JM (2002) Geographical variation in random amplified polymorphic DNA and quantitative traits in Norway spruce. Can J For Res 32:266–282CrossRefGoogle Scholar
  22. Council Directive (1999)/105/EC of 22 December 1999 on the marketing of forest reproductive materia. OJ of the EU. L 240: 34–38Google Scholar
  23. Dering M (2008) Postglacial migration of Norway spruce (Picea abies [L.] Karst.) in Poland based on molecular markers. Dissertation, Polskiej Akademii NaukGoogle Scholar
  24. Dering M, Lewandowski A (2009) Finding the meeting zone: where have the northern and southern ranges of Norway spruce overlapped? For Ecol Manag 259:229–235CrossRefGoogle Scholar
  25. Dietrichson J (1991) Genspredning fra plantet mellomeuropeisk gran (Picea abies [L.] Karst.) på Syd-Østlandet. Rapport fra Skogforsk 11:1–11Google Scholar
  26. Dingethal FJ (1970) Der Wald der Stadt Weißenburg (Bayern) Umformung eines Mittelwaldbetriebes und Aufbau der Folgebestände. Beih Forstwiss Centralbl 31:1–72Google Scholar
  27. Duterme CJ (1962) Réflexions sur la culture de l’épicea en Belgique. Bull Soc For Belgique 69:173–186Google Scholar
  28. EEA (2014) European forest ecosystems—state and trends. EEA Report 5, European Environment Agency, pp. 128.Google Scholar
  29. Eggertsson O, Nygaard PH, Skovsgaard JP (2008) History of afforestation in the Nordic countries. TemaNord 562:15–27Google Scholar
  30. Elsner F (1967) Bayern; Fichte, Picea abies [L.] Karst. In: Puchert H (ed) Wertvolle Herkünfte forstlicher Baumarten in der Bundesrepublik Deutschland, 1st edn. Bayerischer Landwirtschaftsverlag, München, Basel Wien, pp 63–66Google Scholar
  31. Endres M (1905) Handbuch der Forstpolitik. Julius Springer, BerlinGoogle Scholar
  32. EUFGIS (2016) Gene conservation units. Accessed 31 May 2016
  33. Fanta J (1974) Morphologische Variabilität der Fichte und Grundzüge der genetischen Rekonstruktion der Gebirgsfichtenwälder im Karkonoše Nationalpark (ČSSR). Arch Naturschutz u Landschaftsforsch 3:179–200Google Scholar
  34. FAO (2014) Drivers of change and trends affecting forest genetic resources. In: FAO (ed) The state of the world’s Forest genetic resources, 1st edn. Commission on Genetic Resources for Food and Agriculture, Rome, pp 51–64Google Scholar
  35. Ferris R, Humphrey JW (1999) A review of potential biodiversity indicators for application in British forests. Forestry 72:313–328CrossRefGoogle Scholar
  36. Finkeldey R, Mátyás G, Sperisen C, Bonfils P (2000) Strategien zur Auswahl forstlicher Genreservate in der Schweiz. For Snow Landsc 75:137–152Google Scholar
  37. Forestry Commission (2011) NFI 2011 woodland map GP. Forestry Commission, National Forest Inventory, EdinburghGoogle Scholar
  38. Frank A, Sperisen C, Howe GT, Brang P, Walthert L, St.Clair BJ, Heiri C (2017) Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape. Ecology 98:211–227PubMedCrossRefGoogle Scholar
  39. Fuhrmann E (1926) Das Forstsaatgut in der deutschen Volkswirtschaft. Abhandlungen des wirtschaftswissenschaftlichen Seminars in Jena 17, Gustav Fischer, JenaGoogle Scholar
  40. Gadant J (1968) Le reboisement en Auvergne. Rev For Fr 7(8):449–457CrossRefGoogle Scholar
  41. Gathy P (1960) L’órigin des grains epicea commun. Bull Soc Roy For Belgique 67:381–394Google Scholar
  42. Geburek T (2005) Genetic diversity in forest trees—its importance and potential human impact. In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe, 1st edn. Arbora Publishers, Zvolen, pp 437–458Google Scholar
  43. Geburek T, Turok J (2005) Conservation and sustainable management of forest genetic resources in Europe—an introduction. In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe, 1st edn. Arbora Publishers, Zvolen, pp 3–9Google Scholar
  44. Geburek T, Robitschek K, Milasowszky N, Schaudauer K (2007) Different cone colours pay off: lessons learnt from European larch (Larix decidua) and Norway spruce (Picea abies). Can J Botany 85:132–140CrossRefGoogle Scholar
  45. Geburek T, Robitschek K, Milasowszky N (2008) A tree of many faces: why are there different crown types in Norway spruce (Picea abies [L.] Karst.) Flora 203:126–133CrossRefGoogle Scholar
  46. Geburek T, Büchsenmeister R, Englisch M, Frank G, Hauk E, Konrad H, Liebmann S, Neumann M, Starlinger F, Steiner H (2016) Austrian biodiversity index—concepts and evaluation, BFW-Berichte 151. Accessed 20 February 2017
  47. Giertych M (2007) Provenance variation and inheritance. In: Tjoelker MG, Boratyński A, Bugała W (eds) Biology and ecology of Norway spruce, 1st edn. Springer, Berlin, pp 115–146CrossRefGoogle Scholar
  48. Gomöry D, Longauer R, Hlásny T, Pacalaj MS, Krajmerová D (2012) Adaptation to common optimum in different populations of Norway spruce (Picea abies Karst.) Eur J For Res 131:401–411CrossRefGoogle Scholar
  49. Graudal L, Aravanopoulos F, Bennadji Z, Changtragoon S, Fady B, Kjaer ED, Loo J, Ramamonjisoa L (2014) Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. For Ecol Manag 333:35–51CrossRefGoogle Scholar
  50. Greger O (1992) Erfassung von Relikten des autochthonen Fichtenvorkommens im Hochharz, vol 44. Aus dem Walde – Mitteilungen der Niedersächsischen, Landesforstverwaltung, pp 1–319Google Scholar
  51. Gugerli F, Sperisen C, Büchler U, Magni F, Geburek T, Jeandroz S, Senn J (2001) Haplotype variation in a mitochondrial tandem repeat of Norway spruce (Picea abies) populations suggests a serious founder effect during postglacial re-colonization of the western Alps. Mol Ecol 10:1255–1263PubMedCrossRefGoogle Scholar
  52. Haack NN (1909) Die Beschaffung des Kiefern- und Fichtensamens einst, jetzt und künftig. Mitteilungen des deutschen Forstvereins 6:137–167Google Scholar
  53. Hausrath H (1908) Kleine Beiträge zur Geschichte der künstlichen Verjüngung. Allg Forst- Jagdztg 84:47–50Google Scholar
  54. Hannerz M, Almäng A (1997) Utlanländska gran- og och tallprovenienser i svenskt skogsbruk.Skogforsk Resultat No 7Google Scholar
  55. Holmsgaard E (1966) Nadelholzanbau in Dänemark. Forstwiss Centralbl 85:38–59CrossRefGoogle Scholar
  56. Hornstein F (1958) Wald und Mensch. Otto Maier Verlag, RavensburgGoogle Scholar
  57. Ichim R (1988) Istoria padurilor si silviculturii din Bucovina. Editura Ceres, BucharestGoogle Scholar
  58. Immel R (1933) Beiträge zur Frühgeschichte der Nadelholzkultur und der Holzartenverbreitung in Hessen. Allg Forst- Jagdztg 109:173–184Google Scholar
  59. Jansen S, Geburek T (2016) Historic translocations of European larch (Larix decidua Mill.) genetic resources across Europe—a review from the 17th until the mid-20th century. For Ecol Manag 379:114–123CrossRefGoogle Scholar
  60. Jansson G, Danusevičius D, Grotehusman H, Kowalczyk J, Krajmerova D, Skrøppa T, Wolf H (2013) Norway spruce (Picea abies [L.] H. Karst.) In: Pâques LE (ed) Forest tree breeding in Europe; current state-of-the-art and perspectives, managing forest ecosystems, 1st edn. Springer, Dordrecht, Heidelberg, New York London, pp 123–177CrossRefGoogle Scholar
  61. Jeleček L (1973) Vývoj lesnatosti Čech ve 2. polovině 19. století. Hist Geogr 10:177–205Google Scholar
  62. Johnsen Ø, Fossdal CG, Nagy N, Mølmann J, Dæhlen OG, Skrøppa T (2005) Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant Cell Environ 28:1090–1102CrossRefGoogle Scholar
  63. Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–3034CrossRefGoogle Scholar
  64. Kappes U (1972) Zur Anbaugeschichte und Standortbedingten Entwicklung Kurhessischer Mischbestände aus Kiefer, Fichte und Lärche. Dissertation, Georg-August-Universität GöttingenGoogle Scholar
  65. Kirschfeld P (1967) Baden-Württemberg; Fichte, Picea abies [L.] Karst. In: Puchert H (ed) Wertvolle Herkünfte forstlicher Baumarten in der Bundesrepublik Deutschland, 1st edn. Bayerischer, Landwirtschaftsverlag, München, Basel Wien, pp 38–40Google Scholar
  66. Klimo E (1992) The spruce forest ecosystem in Czechoslovakia. In: Teller A, Mathy P, JNR J (eds) Responses of forest ecosystems to environmental changes, 1st edn. Springer, Dordrecht, Heidelberg. New York, London, pp 503–511CrossRefGoogle Scholar
  67. Klimo E, Hager H, Kulhavý J (2000) Spruce monocultures in Central Europe—problems and prospects. EFI Proc 33:5–9Google Scholar
  68. Kmet J, Ditmarová Ľ, Priwitzer T, Kurjak D (2010) Úloha fyziologických aspektov v odumieraní smrečín. In: Kulla L, Sitková Z (eds) Hynutie a rekonštrukcie smrečín na Slovensku—Recenzovaný zborník odborných prác vydaný na DVD. NLC, LVÚ, Zvolen, pp 113–122Google Scholar
  69. Köhler R (1952) Erste Entwicklung der Fichtenkultur im Harz. Forst Holz 7:1–139Google Scholar
  70. König AO (2005) Provenance research: evaluation the spatial pattern of genetic variation. In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe, 1st edn. Arbora Publishers, Zvolen, pp 275–333Google Scholar
  71. Konnert M (1991) Die Fichte (Picea abies [L.] Karst.) im Schwarzwald: Genetische Variation und Korrelationen. Forstwiss Centralbl 110:84–94CrossRefGoogle Scholar
  72. Konnert M (2009) Genetic variation of Picea abies in southern Germany as determined using isozyme and STS markers. Dendrobiology 61s: 131-136Google Scholar
  73. Konnert M, Fady B, Gömöry D, A’Hara S, Wolter F, Ducci F, Koskela J, Bozzano M, Maaten T, Kowalczyk J (2015) Use and transfer of forest reproductive material in Europe in context of climate change. European Forest Genetic Resources Programme (EUFORGEN), Bioversity International, RomeGoogle Scholar
  74. Konôpka J, Šimak M (1990) Rast a statické vlastnosti výškových proveniencií smreka obyčajného na trvalých výskumných plochách v SR. Lesnictví 36:825–842Google Scholar
  75. Konrad H, Mengl M, Geburek T (2011) Genetische Inventur der Fichte in Österreich: große Vielfalt, unterschätze Naturnähe. BFW-Praxisinformation 24:22–24Google Scholar
  76. Kopp M, Matuszewski S (2014) Rapid evolution of quantitative traits: theoretical perspectives. Evol Appl 7:169–191PubMedCrossRefGoogle Scholar
  77. Koskela J, Buck A, Teissier du Cros E (eds) (2007) Climate change and forest genetic diversity: implications for sustainable forest management in Europe. Bioversity International, RomeGoogle Scholar
  78. Koskela J, Lefèvre F (2013) Genetic diversity of forest trees. In: Kraus D, Krumm F (eds) Integrative approaches as an opportunity for conservation of forest biodiversity, 1st edn. European Forest Institute, Erfurt, pp 232–241Google Scholar
  79. Koskela J, Vinceti B, Dvorak W, Bush D, Dawson IK, Loo J, Kjaer ED, Navarro C, Padolina C, Bordács S (2014) Utilization and transfer of forest genetic resources: a global review. For Ecol Manag 333:22–34CrossRefGoogle Scholar
  80. Koski V, Skröppa T, Paule L, Wolf H, Turok J (1997) Technical guidelines for genetic conservation of Norway spruce (Picea abies [L.] Karst.) International Plant Genetic Resource Institute, RomeGoogle Scholar
  81. Kramer K, Hengeveld GS, van der Werft B, de Winter W (2013) Genetic adaptive response: missing issue in climate change assessment studies. In: Proceedings of the Impact World 2013 conference. Potsdam, Germany, pp 27–30Google Scholar
  82. Kremser W (1990) Niedersächsische Forstgeschichte—Eine integrierte Kulturgeschichte des nordwestdeutschen Forstwesens. Heimatbund Rotenburg/Wümme, RotenburgGoogle Scholar
  83. Krutzsch H (1952) Waldaufbau. Deutscher Bauernverlag, BerlinGoogle Scholar
  84. Krutzsch P (1982) Forest gene resources in Sweden. Silva Fenn 16:215–219Google Scholar
  85. Krutzsch P (1992) IUFRO’s role in coniferous tree improvement: Norway spruce (Picea abies [L.] Karst.) Silvae Genet 41:143–150Google Scholar
  86. Kulla L (2011) História nepôvodných smrekových lesov v oblasti Kysúc. In: L. Kulla, Z. Sitková (eds) „Hynutie a rekonštrukcie smrečín na Slovensku“ Recenzovaný zborník odborných prác vydaný na DVD, NLC, LVÚ, Zvolen, pp1–14Google Scholar
  87. Laikre L, Palmé A, Josefsson M, Utter F, Ryman N (2006) Release of alien populations in Sweden. Ambio 35:255–261PubMedCrossRefGoogle Scholar
  88. Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63:87–108CrossRefGoogle Scholar
  89. Lewandowski A, Litkowiec M, Grygier A, Dering M (2012) Weryfikacja pochodzenia świerka pospolitego (Picea abies) w Nadleśnictwie Gołdap. Sylwan 156:494–501Google Scholar
  90. Lewandowski A, Szydlarski M, Litkowiec M (2014) Pochodzenie świerka pospolitego (Picea abies [L.] Karst.) w Nadleśnictwie Kartuzy. Sylwan 158:509–515Google Scholar
  91. Lier M, Parviainen J, Nivet C, Gosselin M, Gosselin F, Paillet Y (2013) The use of European criteria and indicator systems for measuring changes in forest biodiversity. In: Kraus D, Krumm F (eds) Integrative approaches as an opportunity for the conservation of forest biodiversity, 1st edn. Freiburg, European Forest Institute, pp 32–42Google Scholar
  92. Lines R (1987) Choice of seed origins for the main forest species in Britain. Forestry Commission Bulletin No. 66. HMSO.Google Scholar
  93. Lokvenc T (1989) Introdukce jehličnattých dřevin do lesních porostu Krkonos. Opera Corcon 26:61–89Google Scholar
  94. Lüdemann G (1978) Die Rolle der deutschen Forstbaumschulen bei der Herkunftssicherung forstlichen Saat- und Pflanzgutes. Allg Forstztg 37:32–35Google Scholar
  95. Lundkvist K, Rudin D (1977) Genetic variation in eleven populations of Picea abies as determined by isozyme analysis. Hereditas 85:67–74CrossRefGoogle Scholar
  96. Magnesen S (1972) Experimental—økologiske undersøkelser over vekstavslutningen hos frøplanter av gran (Picea abies [L.] Karst.) Medd Vestl Forst Forsøksst 52:271–317Google Scholar
  97. Mansfeld V (2011) Norway spruce in forest ecosystems of the Czech Republic in relation to different site conditions. J For Sci 57:514–522Google Scholar
  98. Marcu Gh (1980) Cercetări privind extinderea culturii molidului în R.S. România, Editura, BucharestGoogle Scholar
  99. Matras J (2009) Growth and development of Polish provenances of Picea abies in the IUFRO 1972 experiment. Dendrobiology 61:145–158Google Scholar
  100. Matras J (2013) Long term variability in seed crops of the main tree species in Poland. Presentation at International conference of European seed kilns, Bernkastel-Kues, Germany, 04–07Google Scholar
  101. Matuszkiewicz W, Matuszkiewicz A (1960) Pflanzensoziologische Untersuchungen der Waldgesellschaften des Riesengebirges. Acta Soc Bot Pol 29:499–530CrossRefGoogle Scholar
  102. Mengl M, Geburek T, Schueler S (2009) Geographical pattern of haplotypic variation in Austrian native stands of Picea abies. Dendrobiology 61:117–118Google Scholar
  103. Mihai G (2003) Researches of Norway spruce interpopulational genetic variability. Ann For Res 46:131–139Google Scholar
  104. Mijnsbrugge KV, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311CrossRefGoogle Scholar
  105. Millar CI, Libby WJ (1989) Disneyland or native ecosystems: genetics and the restorationist. Restor Manag Notes 7:18–24Google Scholar
  106. Modrzyński J (1989) Środowiskowe przystosowanie I pochodzenie świerka pospolitego (Picea abies [L.] Karst.) w Karkonoskim parku narodowym. Rozprawy Naukowe 192, WydawnGoogle Scholar
  107. Modrzyński J (1995) Altitudinal adaptation of Norway spruce (Picea abies [L.] Karst.) progenies indicates small role of introduced provenances in the Karkonosze Mountains. Silvae Genet 44:70–75Google Scholar
  108. Modrzyński J (2007) Ecology. In: Tjoelker MG, Boratyński A, Bugała W (eds) Biology and ecology of Norway spruce. Springer, Berlin, pp 195–220CrossRefGoogle Scholar
  109. Morgante M, Vendramin GG (1991) Genetic variation in Italian populations of Picea abies [L.] Karst. and Pinus leucodermis Ant. In: Müller-Starck G, Ziehe M (eds) Genetic variation in European populations of forest trees, 1st edn. J.D. Sauerlander’s Verlag, Frankfurt a. Main, pp 205–227Google Scholar
  110. Mullin TJ, Andersson B, Bastien JC, Beaulieu J, Burdon RD, Dvorak WS, King JN, Kondo T, Krakowski J, Lee SJ (2011) Economic importance, breeding objectives and achievements. In: Plomion C, Bousquet J, Kole C (eds) Genetics, genomics and breeding of conifers, 1st edn. CRC Press, Abingdon, pp 40–127Google Scholar
  111. Myking T, Rusanen M, Steffenrem A, Kjær ED, Jansson G (2016) Historic transfer of forest reproductive material in the Nordic region: drivers, scale and implications. Forestry 89:325–337CrossRefGoogle Scholar
  112. Noël A (1882) Repeuplements Artificiels et al restauration des Vides & Clairieres des Forêts. Berger-Levrault, ParisGoogle Scholar
  113. Nowakowska JA (2009) Mitochondrial and nuclear DNA differentiation of Picea abies populations in Poland. Dendrobiology 61:119–129Google Scholar
  114. Nožička J (1967) Anfänge der Aufforstung und der künstlichen Verjüngung in der Tschechoslowakei 1243–1770. XIV. IUFRO-Kongress, München, pp 57–67Google Scholar
  115. Nožička J (1972) Původni výskyt smrku v českých zemich. Státní zemědělské nakladatelstui, PrahaGoogle Scholar
  116. Oberdorfer E (1937) Zur spät- und nacheiszeitlichen Vegetationsgeschichte des Oberelsasses und der Vogesen. Z f Bot 30:513–572Google Scholar
  117. Pâque LE (ed) (2013) Forest tree breeding in Europe: current state-of-the-art and perspectives, managing forest ecosystems, 1st edn. London, Springer, Dordrecht, Heidelberg, New YorkGoogle Scholar
  118. Pardé J (1965) Waldbestände und Aufforstungen hoher Wuchsleistung in Frankreich. Wiss Z Tech Univ Dresden 2:403–405Google Scholar
  119. Paul M, Hinrichs T, Janßen A, Schmitt HP, Soppa B, Dörflinger H (2010) Concept for the conservation and sustainable utilization of forest genetic resources in the Federal Republic of Germany. BMELV, BonnGoogle Scholar
  120. Pourtet J (1946) Les repeuplements artificiels. Ecole Nationale des Eaux et forêts, NancyGoogle Scholar
  121. Pourtet J (1952) Les concetions actuelles du reboisement en France. Schweiz Z Forstwes 103:137–151Google Scholar
  122. Rachoy W (1971) Die Waldbauliche Entwicklung in den Wäldern des Praemonstratenser Chorherrn-Stiftes Schlägl im oberen Mühlviertel. Centralbl gesamte Forstwes 88:26–51Google Scholar
  123. Rajora OP, Mosseler A (2001) Challenges and opportunities for conservation of forest genetic resources. Euphytica 118:197–212CrossRefGoogle Scholar
  124. Rausch H (1949) Die Verpflichtung der Forstwirtschaft in der deutschen Not. Allg Forstztg 7:58–62Google Scholar
  125. Regulation (EU) No 1293. (2013) of the European Parliament and of the Council of 11 December 2013 on the establishment of a Programme for the Environment and Climate Action (LIFE) and repealing Regulation (EC) No 614/2007 Text with EEA relevance. OJ of the EU. L 347:185–208Google Scholar
  126. Rohmeder E (1972) Das Saatgut in der Forstwirtschaft. Paul Parey, Hamburg, BerlinGoogle Scholar
  127. Rossmässler W (1967) Hessen; Fichte Picea abies [L.] Karst. In: Puchert H (ed) Wertvolle Herkünfte forstlicher Baumarten in der Bundesrepublik Deutschland, 1st edn. Bayerischer Landwirtschaftsverlag, München, Basel, Wien, pp 96–103Google Scholar
  128. Rubner K (1954) Die Wiederaufforstungen in Bayern von 1948 bis 1954. Bayerischer Landwirtschaftsverlag, MünchenGoogle Scholar
  129. Ruetz WF, Bergmann F (1989) Möglichkeiten zum Nachweis von autochthonen Hochlagenbeständen der Fichte (Picea abies) in den Berchtesgadener Alpen. Forstwiss Centralbl 108:164–174CrossRefGoogle Scholar
  130. Sabor J (2009) Research on the variability of Picea abies in Poland: genetic and breeding value of spruce populations in the Polish range of the species. Dendrobiology 61 supplement:7–13Google Scholar
  131. Schmidt-Vogt H (1977) Die Fichte (1), 1st edn. Paul Parey, Hamburg, BerlinGoogle Scholar
  132. Schoppa FN (2000) Konsequenzen wald- und forstgeschichtlicher Entwicklung für die aktuelle genetische Zusammensetzung von Waldbaumpopulationen in Mitteleuropa. Georg-August-Universität Göttingen, DissertationGoogle Scholar
  133. Schrötter FW (1967) Schleswig-Holstein; Fichte, Picea abies [L.] Karst. In: Puchert H (ed) Wertvolle Herkünfte forstlicher Baumarten in der Bundesrepublik Deutschland, 1st edn. Bayerischer Landwirtschaftsverlag, München, Basel, Wien, pp 247–251Google Scholar
  134. Schwarz A (1903) Der Waldpflanzenzucht-Betrieb in und um Halstenbek. Forstwis Centralbl 25:472–502Google Scholar
  135. Skrøppa T, Dietrichson K (1986) Winter damage in the IUFRO 1964/68 provenance experiment with Norway spruce (Picea abies (L.) Karst.) Comm Nor For Res Inst 39:161–183Google Scholar
  136. Skrøppa T, Kohmann K (1997) Adaptation to local conditions after one generation in Norway spruce. For Genet 4:171–177Google Scholar
  137. Skrøppa T, Tollefsrud M, Sprisen C, Johnsen Ø (2010) Rapid change in adaptive performance from one generation to the next in Pice abies—central European trees in a Nordic environment. Tree Genet Genomes 6:93–99CrossRefGoogle Scholar
  138. Šnytr O (2009) Vyhodnocení genových zdrojů lesních dřevin na území CHKO Jizerské hory. Dissertation, Czech university of life science, PragueGoogle Scholar
  139. Spiecker H (2000) Growth of Norway spruce (Picea abies [L.] Karst.) under changing environmental conditions in Europe. In: Klimo E, Hager H, Kulhavý J (eds) Spruce monocultures in Central Europe—problems and prospects. EFI Proceedings, vol 33, pp 11–27Google Scholar
  140. Spiecker H (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe—temperate zone. J Environ Manag 67:55–65CrossRefGoogle Scholar
  141. Svoboda P (1943) Holzartenwechsel im Pürglitzer Walde. Centralbl gesamte Forstwes 69:65–87Google Scholar
  142. Timbal J, Bonneau M, Landmann G, Trouvilliez J, Bouhot-Delduc L (2005) European non boreal conifer forests. In: Andersson FA (ed) Ecosystems of the world (6): coniferous forests. Elsevier, Amsterdam, pp 131–162Google Scholar
  143. Tollefsrud MM, Kissling R, Gugerli F, Johnsen Ø, Skrøppa T, Cheddadi R, Van der Knaap WO, Latałowa M, Terhürne-Berson R, Litt T, Geburek T, Brochmann C, Sperisen C (2008) Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol 17:4134–4150PubMedCrossRefGoogle Scholar
  144. Tulstrup NP (1959) International trade in forest tree seed. Unasylva 13:196–201Google Scholar
  145. Ujvári-Jármay L, Nagy L, Mátyás CS (2016) The IUFRO 1964/68 inventory provenance trial of Norway spruce in Nyírjes, Hungary—results and conclusions of five decades. Acta Silvatica & Lignaria Hungarica 12, Special Edition, pp 178Google Scholar
  146. Ulbrichová I, Podrázský V, Beran F, Zahradník D, Fulín M, Procházka J, Kubeček J (2015) Picea abies provenance test in the Czech Republic after 36 years—Central European provenances. J For Sci 61:465–477CrossRefGoogle Scholar
  147. Van Loy K, Vandekerkhove K, Van Den Meersschaut D (2003) Assessing and monitoring the status of biodiversity-related aspects in Flemish forests by use of the Flemish forest inventory data. In: Corona P, Kohl M, Marchetti M (eds) Advances in forest inventory for sustainable forest management and biodiversity monitoring, 1st edn. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 405–430CrossRefGoogle Scholar
  148. Vogel-Daniels A (1968) Die natürliche und künstliche Verbreitung der Fichte in Frankreich, Belgien und Luxemburg. Albert-Ludwigs-Universität Freiburg im Breisgau, DissertationGoogle Scholar
  149. Volk H (1969) Untersuchungen zur Ausbreitung und künstlichen Einbringung der Fichte im Schwarzwald. Selbstverlag der Landesforstverwaltung Baden-Württemberg, StuttgartGoogle Scholar
  150. Wickneswari R, Rajora OP, Finkeldey R, Aravanopoulos F, Bouvet JM, Vaillancourt RE, Kanashiro M, Fady B, Tomita M, Vinson C (2014) Genetic effects of forest management practices: global synthesis and perspectives. For Ecol Manag 333:52–65CrossRefGoogle Scholar
  151. Woolsey T (1920) Studies in French forestry. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  152. Yakovlev IA, Fossdal CG, Johnsen Ø (2010) MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol 187:1154–1169PubMedCrossRefGoogle Scholar
  153. Zierhut M (2003) Die Geschichte der Traunsteiner Salinenwälder. Forstl Forschungsber München 194Google Scholar
  154. Zimmermann H (1931) Fichtensamenbeschaffung in Sachsen. Tharandt Forstl Jahrb 82:821–864Google Scholar

Copyright information

© INRA and Springer-Verlag France 2017

Authors and Affiliations

  1. 1.Department of Forest GeneticsAustrian Research Centre for Forests (BFW)ViennaAustria

Personalised recommendations