Growth phenology in Pinus halepensis Mill.: apical shoot bud content and shoot elongation

  • Anna Hover
  • Fabien Buissart
  • Yves Caraglio
  • Christine Heinz
  • François Pailler
  • Merlin Ramel
  • Michel Vennetier
  • Bernard Prévosto
  • Sylvie Sabatier
Original Paper

Abstract

Key message

The chronology of periods of organogenesis and elongation is highlighted in Pinus halepensis.The two first growth units of an annual shoot are preformed inside the bud during the previous year. The following growth units are formed during the spring or summer of the current year.

Context

Analysis of annual shoot length growth phenology is crucial to assess the impact of climate change on tree production. Little is known about the basic growth characteristics and the phenology of pines.

Aims

The present study disentangles the roles of shoot organogenesis vs elongation in the annual growth cycle of the polycyclic Aleppo pine.

Methods

Growth of young Pinus halepensis trees was monitored monthly for 1 year. At each monitoring date, the bud content and meristem dimensions of the main stem shoots apices were analyzed.

Results

The two first growth units of an annual shoot are preformed inside the bud during the previous year. The following growth units are formed during the spring or summer of the current year. The gap between a shoot organogenesis and its elongation may vary from 1 month, for the last growth unit, to half a year, for the first growth units.

Conclusion

Our results underline the importance of taking seasonal environmental conditions from both the previous and the current year into account, in order to study the plasticity of annual shoot growth and its response to climate change and variability.

Keywords

Polycyclic pine Shoot apical meristem Annual shoot Plant architecture 

Notes

Acknowledgements

We thank JL Verdeil and F Montes for help with histological work, and M Lartaud for computer plugins in ImageJ software (PHIV, CIRAD, Montpellier).

Funding

This work was supported by funds from the “Adaptation of agriculture and forests to climate change, Assessing of the potential of forest adaptation to climate change project” (INRA-ACCAF FORADAPT Project), from the Botany and Computational Plant Architecture joint research unit (UMR AMAP), from the National Research Institute of Science and Technology for Environment and Agriculture (Irstea) and the Provence–Alpes–Côte d’Azur region (F Buissart's PHD grant).

References

  1. Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bond TET (1942) Studies in the vegetative growth and anatomy of the tea plant (Camellia thea link.) with special reference to the phloem. I. The flush shoot. Ann Bot 9:183–216CrossRefGoogle Scholar
  3. Buissart F, Caraglio Y, Borianne P, Guéroult M, Le Bec J, Pailler F, Vennetier M, Zilliox C, Sabatier SA (2015) Pith: a new criterion for monitoring the architecture in Mediterranean pines. Trees 29:1827–1836CrossRefGoogle Scholar
  4. Buissart F (2015) Modélisation des effets directs et différés du changement climatique sur le développement architectural des résineux. PhD thesis, Aix Marseille Université, FranceGoogle Scholar
  5. Caraglio Y, Pimont F, Rigolot E (2007) Pinus halepensis Mill. Architectural analysis for fuel modelling. Proc Int Workshop MEDPINE:43–59Google Scholar
  6. Carnicer J, Barbeta A, Sperlich D, Coll M, Penuelas J (2013) Contrasting trait syndromes in angiosmerms and conifers are associated with different responses of tree growth to temperature on a large scale. Front Plant Sci 4:1–19CrossRefGoogle Scholar
  7. Chaubert-Pereira F, Caraglio Y, Lavergne C, Guedon Y (2009) Identifying ontogenetic, environmental and individual components of forest tree growth. Ann Bot 104:883–896CrossRefPubMedPubMedCentralGoogle Scholar
  8. Critchfield WD (1960) Leaf dimorphism in Populus trichocarpa. Am J Bot 47:699–711CrossRefGoogle Scholar
  9. Debazac EF (1968) Les modalités de la croissance en longueur chez les Pins. In: Colloque sur la physiologie de l’arbre, 1966. Mémoire de la Société botanique de France, 3–14Google Scholar
  10. Delpierre N, Vitasse Y, Chuine I, Guillemot J, Bazot S, Rutishauser T, Rathgeber CBK (2016) Temperate and boreal forest tree phenology : from organ-scale processes to terrestrial ecosystem models. Ann For Sci 73:5–25CrossRefGoogle Scholar
  11. Duff GH, Nolan NJ (1958) Growth and morphogenesis in the Canadian forest species. III. The time scale of morphogenesis at the stem apex of Pinus resinosa Ait. Can J Bot 36:687–706CrossRefGoogle Scholar
  12. Esteban LG, Martin JA, De Palacios P, Fernandez FG, Lopez R (2010) Adaptive anatomy of Pinus halepensis trees from different Mediterranean environments in Spain. Trees 24:19–30. doi:10.1007/s00468-009-0375-3 CrossRefGoogle Scholar
  13. Gill AM (1971) The formation, growth and fate of buds of Fraxinus americana L. in Central Massachusetts. Harvard Forestry Papers 20:1–16Google Scholar
  14. Girard F, Vennetier M, Ouarmim S, Caraglio Y, Misson L (2011) Polycyclism, a fundamental tree growth process, decline with recent climate change: the example of Pinus halepensis Mill. In Mediterranean France. Trees 25:311–322. doi:10.1007/s00468-010-0507-9 CrossRefGoogle Scholar
  15. Girard F, Vennetier M, Guibal F, Corona C, Ouarmim S, Herrero A (2012) Pinus halepensis Mill. Crown development and fruiting declined with repeated drought in Mediterranean France. Eur J For Res 131:919–931. doi:10.1007/s10342-011-0565-6 CrossRefGoogle Scholar
  16. Hallé F, Martin R (1968) Etude de la croissance rythmique chez l’Hévéa (Hevea brasiliensis Müll. Arg., Euphorbiacées–Crotonoïdées). Adansonia 8:475–504Google Scholar
  17. Hover A (2014) Croissance et climat : Phénologie de la croissance de la pousse annuelle polycyclique chez le Pin d’Alep (Pinus halepensis Mill., 1768). Master, AgroParisTech, NancyGoogle Scholar
  18. IPCC (2013) Climate change 2013 : the physical science basis in contribution of working group I to the fifth assessment report of the intergovernmental panel of climate change. Cambridge University Press, New YorkGoogle Scholar
  19. Isik K (1990) Seasonal course of height and needle growth in Pinus nigra grown in summer-dry central Anatolia. For Ecol Manag 35:261–270CrossRefGoogle Scholar
  20. Isik F, Isik K, Yildirim T, Li B (2002) Annual shoot growth components related to growth of Pinus brutia. Tree Physiol 22:51–58CrossRefPubMedGoogle Scholar
  21. Jordy M-N (2004) Seasonal variation of organogenetic activity and reserves allocation in the shoot apex of Pinus pinaster Ait. Ann Bot 93:25–37. doi:10.1093/aob/mch005 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Klein T, Di Matteo G, Rotenberg E, Cohen S, Yakir D (2012) Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiol 33:26–36CrossRefPubMedGoogle Scholar
  23. Kremer A (1981) Déterminisme génétique de la croissance en hauteur du Pin maritime (Pinus pinaster Ait.) Ann For Sci 38:199–122CrossRefGoogle Scholar
  24. Kremer A, Roussel A (1982) Composantes de la croissance en hauteur chez le Pin maritime (Pinus pinaster Ait.) Ann For Sci 39(1):77–98CrossRefGoogle Scholar
  25. Lanner RM (1976) Patterns of shoot development in Pinus and their relationship to growth potential. In: Cannell MGR, Last ST (eds) Tree physiology and yield improvement. Academic Press, New York, pp 223–243Google Scholar
  26. Longuetaud F, Caraglio Y (2009) Pith: a marker of primary growth in Picea abies (L.) karst. Trees 23:325–334CrossRefGoogle Scholar
  27. Maseyk KS, Lin T, Rotenberg E, Grünzweig JM, Schwartz A, Yakir D (2008) Physiology–phenology interactions in a productive semi-arid pine forest. New Phytol 178:603–616CrossRefPubMedGoogle Scholar
  28. Mutke S, Gordo FJ, Climent JM, Gil L (2003) Shoot growth and phenology modelling of grafted stone pine (Pinus pinea L.) in inner Spain. Ann For Sci 60:527–537CrossRefGoogle Scholar
  29. Pardos M, Climent J, Gil L, Pardos JA (2003) Shoot growth components and flowering phenology in grafted Pinus halepensis Mill. Trees 17(5):442–450. doi:10.1007/s00468-003-0259-x CrossRefGoogle Scholar
  30. Pillai SK, Chacko B (1978) Anatomical and histochemical studies of the shoot apex of Cedrus deodara. Phytomorphology 28(3):275–283Google Scholar
  31. Prévosto B, Gavinet J, Monnier Y, Corbani A, Fernandez C (2016) Influence of neighbouring woody treatment on Mediterranean oak development in an experimental plantation: better form but weaker growth. For Ecol Manag 362:89–98CrossRefGoogle Scholar
  32. Primack RB, Laube J, Gallinat AS, Menzel A (2015) From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs. Ann Bot 116(6):889–897. doi:10.1093/aob/mcv032 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Puntieri JG, Barthélémy D, Mazzini C, Brion C (2002) Periods of organogenesis in shoots of Nothofagus dombeyi (Mirb.) Oersted (Nothofagaceae). Ann Bot 89:115–124CrossRefPubMedPubMedCentralGoogle Scholar
  34. Quézel P (2000) Taxonomy and biogeography of Méditerranean pines (Pinus halepensis and P. brutia). In: Ne’eman G, Trabaud L (eds) Ecology and biogeography and management of P. halepensis and P. brutia Forest ecosystems in the Mediterranean Basin. Backhuys Publishers, Leiden, pp 1–12Google Scholar
  35. Roloff A (1987) Morphologie der Kronenentwicklung von Fagus sylvatica L. (Rotbuche) unter besonderer Berücksichtigung neuartiger Veränderungen. I. Morphogenetischer Zyklus, Anomalien infolge Prolepsis und Blattfall. Flora 179:355–378CrossRefGoogle Scholar
  36. Sabatier S, Barthélémy D (2003) Periods of organogenesis in mono- and bicyclic annual shoot of Juglans regia L. (Juglandaceae). Ann Bot 92:231–238CrossRefPubMedPubMedCentralGoogle Scholar
  37. Srivastava LM (2002) Plant growth and development: hormones and environment. Academic Press, AmsterdamGoogle Scholar
  38. Taugourdeau O, Chaubert-Pereira F, Sabatier S, Guédon Y (2011) Deciphering the development plasticity of walnut saplings in relation to climatic factors and light environment. J Exp Bot 62:5283–5296CrossRefPubMedGoogle Scholar
  39. Vennetier M, Girard F, Didier C, Ouarmim S, Ripert C, Misson L, Martin W (2011) Adaptation phénologique du pin d’Alep au changement climatique. Forêt Méditerranéenne XXXII(2): 151–166Google Scholar
  40. Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: review and synthesis of data. Tree Physiol 30:669–688CrossRefPubMedGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2017

Authors and Affiliations

  • Anna Hover
    • 1
  • Fabien Buissart
    • 2
  • Yves Caraglio
    • 1
  • Christine Heinz
    • 3
  • François Pailler
    • 4
  • Merlin Ramel
    • 4
  • Michel Vennetier
    • 2
  • Bernard Prévosto
    • 2
  • Sylvie Sabatier
    • 1
  1. 1.CIRAD, UMR AMAPMontpellierFrance
  2. 2.Irstea Aix-en-ProvenceLe TholonetFrance
  3. 3.UM, UMR AMAPMontpellierFrance
  4. 4.INRA, UMR AMAPMontpellierFrance

Personalised recommendations