Recent growth changes in Western European forests are driven by climate warming and structured across tree species climatic habitats

  • Marie Charru
  • Ingrid Seynave
  • Jean-Christophe Hervé
  • Romain Bertrand
  • Jean-Daniel Bontemps
Original Paper


Key message

Recent growth changes (1980–2007) in Western European forests strongly vary across tree species, and range from +42% in mountain contexts to −17% in Mediterranean contexts. These changes reveal recent climate warming footprint and are structured by species' temperature (−) and precipitation (+) growing conditions.


Unprecedented climate warming impacts forests extensively, questioning the respective roles of climatic habitats and tree species in forest growth responses. National forest inventories ensure a repeated and spatially systematic monitoring of forests and form a unique contributing data source.


A primary aim of this paper was to estimate recent growth changes in eight major European tree species, in natural contexts ranging from mountain to Mediterranean. A second aim was to explore their association with species’ climatic habitat and contemporary climate change.


Using >315,000 tree increments measured in >25,000 NFI plots, temporal changes in stand basal area increment (BAI) were modelled. Indicators of climate normals and of recent climatic change were correlated to species BAI changes.


BAI changes spanned from −17 to +42% over 1980–2007 across species. BAI strongly increased for mountain species, showed moderate/no increase for generalist and temperate lowland species and declined for Mediterranean species. BAI changes were greater in colder/wetter contexts than in warmer/drier ones where declines were observed. This suggested a role for climate warming, further found more intense in colder contexts and strongly correlated with species BAI changes.


The predominant role of climate warming and species climatic habitat in recent growth changes is highlighted in Western Europe. Concern is raised for Mediterranean species, showing growth decreases in a warmer climate with stable precipitation.


European forests Forest growth Climate warming Climatic habitat Tree species National forest inventory 



The authors wish to thank the Inventaire Forestier National (French National Forest Inventory) for funding the present research and providing access to data. They express their special recognition to François Morneau (NFI) for sharing expertise on using NFI data. This work was also supported by the French Research Agency (ANR) through the ‘‘Oracle’’ project (CEP&S call, 2010). The authors last thank the two anonymous reviewers of the journal for their commitment and useful comments on a previous version of this manuscript.


  1. Arovaara H, Hari P, Kuusela K (1984) Possible effect of changes in atmospheric composition and acid rain on tree growth. An analysis based on the results of Finnish National Forest Inventories. Communicationes Instituti Forestalis Fenniae 122:4–14Google Scholar
  2. Babst F, Poulter B, Trouet V, Tan K, Neuwirth B, Wilson R, Carrer M, Grabner M, Tegel W, Levanic T, Panayotov M, Urbinati C, Bouriaud O, Ciais P, Franck D (2013) Site- and species-specific responses of forest growth to climate across the European continent. Glob Ecol Biogeogr 22:706–717CrossRefGoogle Scholar
  3. Barbati A, Marchetti M, Chirici G, Corona P (2014) European Forest Types and Forest Europe SFM indicators: tools for monitoring progress on forest biodiversity conservation. For Ecol Manag 321:145–157CrossRefGoogle Scholar
  4. Becker M (1989) The role of climate on present and past vitality of silver fir forests in the Vosges mountains of northeastern France. Can J For Res 19:1110–1117CrossRefGoogle Scholar
  5. Bénichou P, Le Breton P (1987) Prise en compte de la topographie pour la cartographie des champs pluviométriques statistiques. La Météorologie 7:23–34Google Scholar
  6. Bergès L, Dupouey J-L, Franc A (2000) Long-term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteenth century. Trees 14:398–408CrossRefGoogle Scholar
  7. Bertrand R, Lenoir J, Piedallu C, Riofrio-Dillon G, de Ruffray P, Vidal C, Pierrat J-C, Gégout J-C (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–520CrossRefPubMedGoogle Scholar
  8. Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity - evidence since the middle of the 20th century. Glob Chang Biol 12:862–882CrossRefGoogle Scholar
  9. Bontemps J-D (2006) Evolution de la productivité des peuplements réguliers et monospécifiques de hêtre (Fagus sylvatica L.) et de chêne sessile (Quercus petraea Liebl.) dans la moitié Nord de la France au cours du XXe siècle. PhD Dissertation, ENGREF, Nancy, 448 pGoogle Scholar
  10. Bontemps J-D, Bouriaud O (2014) Predictive approaches to forest site productivity: recent trends, challenges and future perspectives. Forestry 87:109–128CrossRefGoogle Scholar
  11. Bontemps J-D, Esper J (2011) Statistical modelling and RCS detrending methods provide similar estimates of long-term trend in radial growth of common beech in north-eastern France. Dendrochronologia 29:99–107CrossRefGoogle Scholar
  12. Bontemps J-D, Hervé J-C, Dhôte J-F (2009) Long-term changes in forest productivity: a consistent assessment in even-aged stands. For Sci 55:549–564Google Scholar
  13. Bontemps J-D, Hervé J-C, Leban J-M, Dhôte J-F (2011) Nitrogen footprint in a long-term observation of forest growth over the twentieth century. Trees 25:237-251Google Scholar
  14. Bontemps J-D, Hervé J-C, Duplat P, Dhôte J-F (2012) Shifts in the height-related competitiveness of tree species following recent climate warming and implications for tree community composition: the case of common beech and sessile oak as predominant broadleaved species in Europe. Oikos 121:1287–1299CrossRefGoogle Scholar
  15. Bošela M, Petras R, Sitkova Z, Priwitzer T, Pajtik J, Hlavata H, Sedmak R, Tobin B (2014) Possible causes of the recent rapid increase in the radial increment of silver fir in the Western Carpathians. Environ Pollut 184:211–221CrossRefPubMedGoogle Scholar
  16. Bouriaud O, Marin G, Bouriaud L, Hessenmöller D, Schulze ED (2016) Romanian legal management rules limit wood production in Norway spruce and beech forests. Forest Ecosystems 3:20CrossRefGoogle Scholar
  17. Bowman DMJS, Brienen RJW, Gloor E, Phillips OL, Prior LD (2013) Detecting trends in tree growth: not so simple. Trends in Ecology and Evolution 18:11–17Google Scholar
  18. Briffa KR, Jones PD, Schweingruber FH, Karlén W, Shiyatov SG (1996) Tree ring variables as proxy-climate indicators: problems with low-frequency signals. In: Jones PD, Bradley RS, Jouzel J (eds) Climate variations and forcing mechanisms of the last 2000 years. Springer, Berlin, pp 9–41CrossRefGoogle Scholar
  19. Büntgen U, Frank DC, Kaczka RJ, Verstege A, Zwijacz-Kozica T, Esper J (2007) Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia Tree Physiology 27:689-702Google Scholar
  20. Carrascal LM, Galvan I, Gordo O (2009) Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118:681–690CrossRefGoogle Scholar
  21. Charru M, Seynave I, Morneau F, Bontemps J-D (2010) Recent changes in forest productivity: an analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. For Ecol Manag 260:864–874CrossRefGoogle Scholar
  22. Charru M, Seynave I, Morneau F, Rivoire M, Bontemps J-D (2012) Significant differences and curvilinearity in the self-thinning relationships of 11 temperate tree species assessed from forest inventory data. Ann For Sci 69:195–205CrossRefGoogle Scholar
  23. Charru M, Seynave I, Hervé J-C, Bontemps J-D (2014) Spatial patterns of historical growth changes in Norway spruce across western European mountains and the key effect of climate warming. Trees 28:205–221CrossRefGoogle Scholar
  24. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533CrossRefPubMedGoogle Scholar
  25. Cienciala E, Russ R, Šantrůčková H, Altman J, Kopáček J, Hůnová I, Štěpánek P, Oulehle F, Tumajer J, Ståhl G (2016) Discerning environmental factors affecting current tree growth in Central Europe. Sci Total Environ 573:541–554CrossRefPubMedGoogle Scholar
  26. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–496Google Scholar
  27. Croisé L, Ulrich E, Duplat P, Jaquet O (2005) Two independent methods for mapping bulk deposition in France. Atmos Environ 39:3923–3941CrossRefGoogle Scholar
  28. Davison AC, Hinkley DV (1997). Bootstrap methods and their application, Cambridge University Press, 583 pGoogle Scholar
  29. Dhôte J-F (1999) Compétition entre classes sociales chez le Chêne sessile et le Hêtre. Revue Forestière Française LI:309–325Google Scholar
  30. Dhôte J-F, Hervé J-C (2000) Productivity changes in four sessile oak forests since 1930: a stand-level approach. Ann For Sci 57:651–680CrossRefGoogle Scholar
  31. Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. For Ecol Manag 173:63–78CrossRefGoogle Scholar
  32. Dolos K, Bauer A, Albrecht S (2015) Site suitability for tree species: is there a positive relation between a tree species’ occurrence and its growth? Eur J For Res 134:609–621CrossRefGoogle Scholar
  33. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26CrossRefGoogle Scholar
  34. Elfving B, Tegnhammar L (1996) Trends of tree growth in Swedish forests 1953-1992: an analysis based on sample trees from the National Forest Inventory. Scand J For Res 11:26–37CrossRefGoogle Scholar
  35. Esper J (2003) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Research 59:81–98Google Scholar
  36. Friedrich DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J. (2009). Species-specific climate sensitivity of tree growth in Central-West Germany Trees 23:729–739 Google Scholar
  37. Gégout J-C (2008) Validation de bio-indicateurs floristiques pour la surveillance de l’état nutritionnel des sols forestiers français à partir des données de l’Inventaire forestier national. Agroparistech, Inventaire Forestier National, Nancy, 47 ppGoogle Scholar
  38. Gégout J-C, Hervé J-C, Houllier F, Pierrat J-C (2003) Prediction of forest soil nutrient status using vegetation. J Veg Sci 14:55–62CrossRefGoogle Scholar
  39. Geladi P, Kowalski BR (1986) Partial least-squares regression—a tutorial. Anal Chim Acta 185:1–17CrossRefGoogle Scholar
  40. Gibelin A-L, Dubuisson B, Corre L, Deaux N, Jourdain S, Laval L, Piquemal J-M, Mestre O, Dennetière D, Desmidt S, Tamburini A (2014) Evolution de la température en France depuis les années 1950. La Météorologie 87:45–53CrossRefGoogle Scholar
  41. Gillespie AJR (1999) Rationale for a national annual forest inventory program. J For 97:16–20Google Scholar
  42. Granier A, Reichstein M, Breda N, Janssens IA, Falge E, Ciais P, Grunwald T, Aubinet M et al (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric For Meteorol 143:123–145CrossRefGoogle Scholar
  43. Gschwantner T (2006) Growth changes according to the data of the Austrian National Forest Inventory and their climatic causes, PhD Dissertation, BFW, AustriaGoogle Scholar
  44. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci 103:14288–14293CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hari P, Arovaara H (1988) Detecting CO2 induced enhancement in the radial increment of trees. Evidence from northern timber line Scandinavian Journal of Forest Research 3:67–74CrossRefGoogle Scholar
  46. Hartl-Meier C, Dittmar C, Zang C, Rothe A (2014) Mountain forest growth response to climate change in the Northern Limestone Alps. Trees 28:819–829CrossRefGoogle Scholar
  47. Hasenauer H, Nemani RR, Schadauer K, Running SW (1999) Forest growth response to changing climate between 1961 and 1990 in Austria. For Ecol Manag 122:209–219CrossRefGoogle Scholar
  48. Hellmann L, Agafonov L, Charpentier Ljungqvist F, Churakova O, Düthorn E, Esper J, Hülsmann L, Kirdyanov A et al (2016) Diverse growth trends and climate responses across Eurasia’s boreal forest. Environmental Research Letter 11:074021CrossRefGoogle Scholar
  49. Hervé J-C, Wurpillot S, Vidal C, Roman-Amat B (2014) L’inventaire des ressources forestières en France: un nouveau regard sur de nouvelles forêts. Revue Forestière Française 66:247–260Google Scholar
  50. IFN (1994) Manuel du Chef d’Equipe, Ministère de l’Agriculture, Nogent sur VernissonGoogle Scholar
  51. IFN (2006) La forêt française. Les résultats de la campagne d’inventaire 2005. Résultats nationaux présentés selon un découpage en cinq interrégions, Nogent-sur-Vernisson, 114p.Google Scholar
  52. IGN (2016) Indicateurs de gestion durable des forêts françaises métropolitaines, edition 2015, Résults. Maaf-IGN, Paris, 343 ppGoogle Scholar
  53. Jackson DS, Gifford HH, Chittenden J (1976) Environmental variables influencing the increment of Pinus radiata: (2) effects of seasonal drought on height and diameter increment. N Z J For Sci 5:265–286Google Scholar
  54. Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land-surface air temperature variations: an extensive revision and update to 2010. J Geophys Res 117:29Google Scholar
  55. Jump AS, Hunt JM, Penuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Chang Biol 12:2163–2174CrossRefGoogle Scholar
  56. Kahle HP, Karjalainen T, Schuck A, Agren GI, Kellomaki S, Mellert K, Prietzel J, Rehfuess K-E, et al. (eds) (2008) Causes and consequences of forest growth trends in Europe. EFI Research Report, EFI, JoensuuGoogle Scholar
  57. Kauppi PE, Mielikäinen K, Kuusela K (1992) Biomass and carbon budget of European forests, 1971 to 1990. Science 256:70–74CrossRefPubMedGoogle Scholar
  58. Kauppi PE, Posch M, Pirinin P (2014) Large impacts of climatic warming on growth of boreal forests since 1960. PLoS One 9:e111340CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kint V, Aertsen W, Campioli M, Vansteenkiste D, Delcloo A, Muys B (2012) Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901–2008. Clim Chang 115:343–363CrossRefGoogle Scholar
  60. Kirschbaum MUF (2000) Forest growth and species distribution in a changing climate. Tree Physiol 20:309–322CrossRefPubMedGoogle Scholar
  61. Köble R, Seufert G (2001) Novel maps for forest tree species in Europe. In: Proceedings of the 8th European Symposium on the Physico-Chemical Behaviour of Air Pollutants: "A Changing Atmosphere!", Torino (Italy), 17–20 September 2001. Data set available online at:
  62. Kotlarski S, Bosshard T, Lüthi D, Pall P, Schär C (2012) Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim Chang 112:189–215CrossRefGoogle Scholar
  63. Kreyling J (2010) Winter climate change: a critical factor for temperate vegetation performance. Ecology 91:1939–1948CrossRefPubMedGoogle Scholar
  64. Lamarche VC, Graybill DA, Fritts HC, Rose MR (1984) Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science 225:1019–1021CrossRefPubMedGoogle Scholar
  65. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709CrossRefGoogle Scholar
  66. Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas M-J, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, Psomas A, Poulter B, Hanewinkel M (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manag 146:69–83CrossRefGoogle Scholar
  67. Martens H, Martens M (2000) Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual Prefer 11:5–16CrossRefGoogle Scholar
  68. Martin-Benito D, Gea-Izquierdo G, del Rio M, Canellas I (2008) Long-term trends in dominant-height growth of black pine using dynamic models. For Ecol Manag 256:1230–1238CrossRefGoogle Scholar
  69. Martinez-Vilalta J, Lopez BC, Adell N, Badiella L, Ninyerola M (2008) Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Glob Chang Biol 14:2868–2881CrossRefGoogle Scholar
  70. Matèrn B (1975) On estimating the dominant height, Royal College of Forestry. Dept. of Forest Biometry, Stockholm, 4ppGoogle Scholar
  71. Mellert KH, Prietzel J, Straussberger R, Rehfuess KE, Kahle HP, Perez P, Spiecker H (2008) Relationships between long-term trends of air temperature, precipitation, nitrogen nutrition and growth of coniferous stands in Central Europe and Finland. Eur J For Res 127:507–524CrossRefGoogle Scholar
  72. Mevik B-H, Wehrens R (2007) The pls package: principal component and partial least squares regression in R. J Stat Softw 18:23CrossRefGoogle Scholar
  73. Morneau F, Duprez C, Hervé J-C (2008) Les forêts mélangées en France métropolitaine. Caractérisation à partir des résultats de l’Inventaire forestier national. Revue Forestière Française 60:107–120Google Scholar
  74. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702CrossRefGoogle Scholar
  75. Nellemann C, Thomsen MG (2001) Long-term changes in forest growth: potential effects of nitrogen deposition and acidification. Water Air and Soil Pollution 128:197–205CrossRefGoogle Scholar
  76. Niinemets U, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol Monogr 76:521–547CrossRefGoogle Scholar
  77. Pascaud A, Sauvage S, Coddeville P, Nicolas M, Croisé L, Mezdour A, Probst A (2016) Contrasted spatial and long-term trends in precipitation chemistry and deposition fluxes at rural stations in France. Atmos Environ 146:28–43CrossRefGoogle Scholar
  78. Penuelas J, Hunt JM, Ogaya R, Jump AS (2008) Twentieth century changes of tree-ring delta C-13 at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Glob Chang Biol 14:1076–1088CrossRefGoogle Scholar
  79. Piedallu C, Gégout J-C (2007) Multiscale computation of solar radiation for predictive vegetation modelling. Ann For Sci 64:899–909CrossRefGoogle Scholar
  80. Piedallu C, Gégout J-C, Bruand A, Seynave I (2011) Mapping soil water holding capacity over large areas to predict potential production of forest stands. Geoderma 160:355–366CrossRefGoogle Scholar
  81. Piovesan G, Biondi F, Di Filippo A, Alessandrini A, Maugeri M (2008) Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob Chang Biol 14:1265–1281CrossRefGoogle Scholar
  82. Pretzsch H⇑, Biber P, Schütze G, Bielak K (2014) Changes of forest stand dynamics in Europe. Facts from long-term observational plots and their relevance for forest ecology and management. For Ecol Manag 316:65–77Google Scholar
  83. R Development Core Team (2009) R: a language and environment for statistical computing. R foundation for statistical computing, ViennaGoogle Scholar
  84. Rathgeber C, Guiot J, Roche P, Tessier L (1999) Quercus humilis increase of productivity in the Mediterranean area. Ann For Sci 56:211–219CrossRefGoogle Scholar
  85. Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46:627–638Google Scholar
  86. Robert N, Vidal C, Colin A, Hervé J-C, Hamza N, Cluzeau C (2010) France. In: Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (eds) National Forest Inventories—pathways for common reporting. Springer, Heidelberg Dordrecht London New York, pp 207–221Google Scholar
  87. Ryan MG, Binkley D, Fownes JH (1997) Age-related decline in forest productivity: pattern and process. Advance in Ecological Research 27:214–262Google Scholar
  88. Siefert A, Ravenscroft C, Althoff D, Alvarez-Yépiz JC, Carter BE, Glennon KL, Heberling JM, Su Jo I, Pontes A, Sauer A, Jo IS, Willis A, Fridley JD (2012) Scale dependence of vegetation–environment relationships: a meta-analysis of multivariate data. J Veg Sci 23:942–951CrossRefGoogle Scholar
  89. Skovsgaard J-P, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81:13–31CrossRefGoogle Scholar
  90. Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) (1996) Growth trends in European forests. Springer, Berlin HeidelbergGoogle Scholar
  91. Spinoni J, Naumann G, Vogt JV, Barbosa P (2015) The biggest drought events in Europe from 1950 to 2012. Journal of Hydrology: Regional Studies 3:509–524Google Scholar
  92. Tegel W, Seim A, Hakelberg D, Hoffmann S, Panev M, Westphal T, Büntgen U (2014) A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur J For Res 133:61–71CrossRefGoogle Scholar
  93. Tenenhaus M (1998) La régression PLS - Théorie et pratique. Editions Technip, ParisGoogle Scholar
  94. Thuiller W, Lavorel S, Araújo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14:347–357CrossRefGoogle Scholar
  95. Tilman D (1988) Plant strategies and the dynamics and structure of plant communities Princeton University Press. Princeton, New JerseyGoogle Scholar
  96. Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (2010) National forest inventories—pathways for common reporting. Springer, Heidelberg, Dordrecht, LondonCrossRefGoogle Scholar
  97. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2013) Global warming and changes in drought. Nat Clim Chang 4:17–22CrossRefGoogle Scholar
  98. Turc L (1961) Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Annals of Agronomy 12:13–49Google Scholar
  99. Vidal J-P, Martin E, Franchisteguy L, Baillon M, Soubeyroux J-M (2010) A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int J Climatol 30:1627–1644CrossRefGoogle Scholar
  100. Vila B, Vennetier M, Ripert C, Chandioux O, Liang E, Guibal F, Torre F (2008) Has global change induced divergent trends in radial growth of Pinus sylvestris and Pinus halepensis at their bioclimatic limit? The example of the Sainte-Baume forest (south-east France). Ann For Sci 65:709CrossRefGoogle Scholar
  101. Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–688CrossRefPubMedGoogle Scholar
  102. Wehrens R, Mevik BH (2007) PLS: Partial least squares regression (PLSR) and principal component regression (PCR). R package version 2.1–0. ttp://
  103. Wu C, Hember RA, Chen JM, Kurz WA, Price DT, Boisvenue C, Gonsamo A, Ju W (2014) Accelerating forest growth enhancement due to climate and atmospheric changes in British Colombia, Canada over 1956-2001. Scientific Reports 4:4461CrossRefPubMedPubMedCentralGoogle Scholar
  104. Yue C, Kahle H-P, Kohnle U, Zhang Q, Kang X (2014) Detecting trends in diameter growth of Norway spruce on long-term forest research plots using linear mixed-effects models. Eur J For Res 133:783–792CrossRefGoogle Scholar
  105. Zang C, Hartl-Meier C, Dittmar C, Rothe A, Menzel A (2014) Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Glob Chang Biol 20:3767–3779CrossRefPubMedGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2017

Authors and Affiliations

  • Marie Charru
    • 1
    • 2
    • 3
  • Ingrid Seynave
    • 1
    • 2
  • Jean-Christophe Hervé
    • 4
  • Romain Bertrand
    • 1
    • 2
    • 5
  • Jean-Daniel Bontemps
    • 4
    • 1
    • 2
  1. 1.AgroParisTech, Centre de Nancy, UMR 1092 Laboratoire d’Etude des Ressources Forêt-Bois (LERFoB)NancyFrance
  2. 2.INRA, Centre de Nancy-Lorraine, UMR 1092 Laboratoire d’Etude des Ressources Forêt-Bois (LERFoB)ChampenouxFrance
  3. 3.Bordeaux Sciences Agro, UMR 1391 Interactions Sol-Plante-Atmosphère (ISPA)GradignanFrance
  4. 4.IGN, Laboratoire de l’Inventaire Forestier (LIF)NancyFrance
  5. 5.CNRS, USR 2936 SEEM, Centre for Biodiversity Theory and Modelling2 route du CNRSMoulisFrance

Personalised recommendations