Bioindication and modelling of atmospheric deposition in forests enable exposure and effect monitoring at high spatial density across scales

  • Winfried Schröder
  • Stefan Nickel
  • Simon Schönrock
  • Roman Schmalfuß
  • Werner Wosniok
  • Michaela Meyer
  • Harry Harmens
  • Marina V. Frontasyeva
  • Renate Alber
  • Julia Aleksiayenak
  • Lambe Barandovski
  • Oleg Blum
  • Alejo Carballeira
  • Maria Dam
  • Helena Danielsson
  • Ludwig De Temmermann
  • Anatoly M. Dunaev
  • Barbara Godzik
  • Katrin Hoydal
  • Zvonka Jeran
  • Gunilla Pihl Karlsson
  • Pranvera Lazo
  • Sebastien Leblond
  • Jussi Lindroos
  • Siiri Liiv
  • Sigurður H. Magnússon
  • Blanka Mankovska
  • Encarnación Núñez-Olivera
  • Juha Piispanen
  • Jarmo Poikolainen
  • Ion V. Popescu
  • Flora Qarri
  • Jesus Miguel Santamaria
  • Mitja Skudnik
  • Zdravko Špirić
  • Trajce Stafilov
  • Eiliv Steinnes
  • Claudia Stihi
  • Ivan Suchara
  • Lotti Thöni
  • Hilde Thelle Uggerud
  • Harald G. Zechmeister
Original Paper

Abstract

Key message

Moss surveys provide spatially dense data on environmental concentrations of heavy metals and nitrogen which, together with other biomonitoring and modelling data, can be used for indicating deposition to terrestrial ecosystems and related effects across time and areas of different spatial extension.

Context

For enhancing the spatial resolution of measuring and mapping atmospheric deposition by technical devices and by modelling, moss is used complementarily as bio-monitor.

Aims

This paper investigated whether nitrogen and heavy metal concentrations derived by biomonitoring of atmospheric deposition are statistically meaningful in terms of compliance with minimum sample size across several spatial levels (objective 1), whether this is also true in terms of geostatistical criteria such as spatial auto-correlation and, by this, estimated values for unsampled locations (objective 2) and whether moss indicates atmospheric deposition in a similar way as modelled deposition, tree foliage and natural surface soil at the European and country level, and whether they indicate site-specific variance due to canopy drip (objective 3).

Methods

Data from modelling and biomonitoring atmospheric deposition were statistically analysed by means of minimum sample size calculation, by geostatistics as well as by bivariate correlation analyses and by multivariate correlation analyses using the Classification and Regression Tree approach and the Random Forests method.

Results

It was found that the compliance of measurements with the minimum sample size varies by spatial scale and element measured. For unsampled locations, estimation could be derived. Statistically significant correlations between concentrations of heavy metals and nitrogen in moss and modelled atmospheric deposition, and concentrations in leaves, needles and soil were found. Significant influence of canopy drip on nitrogen concentration in moss was proven.

Conclusion

Moss surveys should complement modelled atmospheric deposition data as well as other biomonitoring approaches and offer a great potential for various terrestrial monitoring programmes dealing with exposure and effects.

Keywords

Bioaccumulation Biomonitoring EMEP Environmental specimen bank ICP Forests Level II LOTOS-EUROS 

Notes

Acknowledgements

This research paper was only possible through the help and support of the national authorities of the countries participating in the European Moss Survey 2005 and 2010, of the Federal Environmental Agency, Dessau, Germany, of the Meteorological Synthesizing Centre - East (MSC-E), Moscow, Russia, and of the ICP Vegetation Programme Coordination Centre, Centre for Ecology & Hydrology, Bangor, UK.

Compliance with ethical standards

Funding

The sampling and chemical analyses were funded by the national authorities of the countries participating in the European Moss Survey 2010. The Federal Environment Agency of Germany funded the statistical investigations on which the presented results were based. Collation and quality control of the EMS data was conducted by the ICP Vegetation Programme Coordination Centre, funded by Defra (UK), UNECE and NERC (UK).

Supplementary material

13595_2017_621_MOESM1_ESM.docx (30 kb)
Table S1 (DOCX 29 kb)
13595_2017_621_MOESM2_ESM.docx (30 kb)
Table S2 (DOCX 30 kb)
13595_2017_621_MOESM3_ESM.docx (326 kb)
Figure S1 (DOCX 326 kb)
13595_2017_621_MOESM4_ESM.docx (220 kb)
Figure S2 (DOCX 220 kb)
13595_2017_621_MOESM5_ESM.docx (217 kb)
Figure S3 (DOCX 217 kb)
13595_2017_621_MOESM6_ESM.docx (228 kb)
Figure S4 (DOCX 227 kb)
13595_2017_621_MOESM7_ESM.docx (210 kb)
Figure S5 (DOCX 209 kb)
13595_2017_621_MOESM8_ESM.docx (226 kb)
Figure S6 (DOCX 226 kb)
13595_2017_621_MOESM9_ESM.docx (228 kb)
Figure S7 (DOCX 228 kb)
13595_2017_621_MOESM10_ESM.docx (168 kb)
Figure S8 (DOCX 168 kb)
13595_2017_621_MOESM11_ESM.docx (193 kb)
Figure S9 (DOCX 192 kb)
13595_2017_621_MOESM12_ESM.docx (219 kb)
Figure S10 (DOCX 219 kb)
13595_2017_621_MOESM13_ESM.docx (218 kb)
Figure S11 (DOCX 217 kb)
13595_2017_621_MOESM14_ESM.docx (40 kb)
Figure S12 (DOCX 39 kb)
13595_2017_621_MOESM15_ESM.docx (42 kb)
Figure S13 (DOCX 42 kb)
13595_2017_621_MOESM16_ESM.docx (43 kb)
Figure S14 (DOCX 42 kb)
13595_2017_621_MOESM17_ESM.docx (42 kb)
Figure S15 (DOCX 41 kb)

References

  1. ARGE StickstoffBW (Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg, Ministerium für Ländlichen Raum und Verbraucherschutz Baden-Württemberg, Ministerium für Verkehr und Infrastruktur Baden-Württemberg) (2014) Ermittlung standortspezifischer Critical Loads für Stickstoff - Dokumentation der Critical Limits und sonstiger Annahmen zur Berechnung der Critical Loads für bundesdeutsche FFH-Gebiete. Karlsruhe:1–187Google Scholar
  2. Basile A, Sorbo S, Conte B, Cardi M, Esposito S (2013) Ultrastructural changes and heat shock proteins 70 induction upon urban pollution are similar to the effects observed under in vitro heavy metals stress in Conocephalum conicum (Marchantiales - Bryophyta). Environ Pollut 182:209–216CrossRefPubMedGoogle Scholar
  3. Berg B, Dise N (2004) Calculating the long-term stable nitrogen sink in northern European forests. Acta Oecol 26(1):15–21CrossRefGoogle Scholar
  4. Bjerregaard P, Andersen CBI, Andersen O (2015) Ecotoxicology of metals—sources, transport, and effects on the ecosystem. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook on the toxicology of metals, 4th edn. Vol. 1. Elsevier Science, Amsterdam, pp 425–459CrossRefGoogle Scholar
  5. Bleeker A, Draaijers G, van der Veen D, Erisman JW, Möls H, Fonteijn P, Geusebroek M (2003) Field intercomparison of throughfall measurements performed within the framework of the pan European intensive monitoring program of EU/ICP Forest. Environ Pollut 125:123–138. doi: 10.1016/S0269-7491(03)00142-8 CrossRefPubMedGoogle Scholar
  6. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  7. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth, Belmont, CAGoogle Scholar
  8. Builtjes P, Schaap M, Wichink Kruit R, Nagel HD, Nickel S, Schröder W (2014) Impacts of heavy metal emissions on air quality and ecosystems in Germany. 1st Progress Report on behalf of the German Federal Environmental Agency, Dessau. April 2014Google Scholar
  9. Clarke N, Zlindra D, Ulrich E, Mosello R, Derome J, Derome K, König N, Lövblad G, Draaijers GPJ, Hansen K, Thimonier A, Waldner P (2010) Sampling and analysis of deposition. Part XIV. In: ICP Forests. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE, ICP Forests, Hamburg, Germany, pp 66. [ISBN: 978–3–926301-03-1] [online] URL: http://www.icp-forests.org/pdf/FINAL_Depo.pdf
  10. Clarke N, Fischer R, de Vries W, Lundin L, Papale D, Vesala T, Merilä P, Matteucci G, Mirtl M, Simpson D, Paoletti E (2011) Availability, accessibility, quality and comparability of monitoring data for European forests for use in air pollution and climate change science. iForest 4:162–166CrossRefGoogle Scholar
  11. Cools N, De Vos B (2011) Availability and evaluation of European forest soil monitoring data in the study on the effects of air pollution on forests. iForest 4:205–211 [online 2011-11-03] URL:http://www.sisef.it/iforest/show.php?id=588 CrossRefGoogle Scholar
  12. de Vries W, Groenenberg JE (2009) Evaluation of approaches to calculate critical metal loads for forest ecosystems. Environ Pollut 157:3422–3432CrossRefPubMedGoogle Scholar
  13. de Vries W, Dobbertin MH, Solberg S, van Dobben HF, Schaub M (2014) Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: an overview. Plant Soil 380:1–45CrossRefGoogle Scholar
  14. Dore AJ, Carslaw DC, Braban C, Cain M, Chemel C, Conolly C, Derwent RG, Griffiths SJ, Hall J, Hayman G, Lawrence S, Metcalfe SE, Redington A, Simpson D, Sutton MA, Sutton P, Tang YS, Vieno M, Werner M, Whyatt JD (2015) Evaluation of the performance of different atmospheric chemical transport models and inter-comparison of nitrogen and sulphur deposition estimates for the UK. Atmos Environ 119:131–143CrossRefGoogle Scholar
  15. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 2013:4967–4983CrossRefGoogle Scholar
  16. Erisman JW, Mols H, Fonteijn P, Geusebroek M, Draaijers G, Bleeker A, van der Veen D (2003) Field intercomparison of precipitation measurements performed within the framework of the Pan European Intensive Monitoring Program of EU/ICP Forests. Environ Pollut 125:139–155. doi: 10.1016/S0269-7491(03)00082-4 CrossRefPubMedGoogle Scholar
  17. Fernández JA, Boquete MT, Carballeira A, Aboal JR (2015a) A critical review of protocols for moss biomonitoring of atmospheric deposition: sampling and sample preparation. Sci Tot Environ 517:132–150CrossRefGoogle Scholar
  18. Fernández JA, Boquete MT, Carballeira A, Aboal JR (2015b) Response to the comments on A critical review of protocols for moss biomonitoring of atmospheric deposition: Sampling and sample preparation by Fernández JA, Boquete MT, Carballeira A, Aboal JR. Sci Tot Environ 517:132-150. Sci Tor Environ 538:1027–1028CrossRefGoogle Scholar
  19. Ferretti M (2010) Harmonizing forest inventories and forest condition monitoring—the rise or the fall of harmonized forest condition monitoring in Europe? iForest 3:1–4 [online: 2010-01-22] URL: http://www.sisef.it/iforest/show.php?id=518 CrossRefGoogle Scholar
  20. Ferretti M (2011) Quality assurance: a vital need in ecological monitoring. CAB Rev Perspect Agric Vet Res Nutr Nat Resour 6:1–14Google Scholar
  21. Ferretti M, Fischer RF (eds) (2013) Methods for terrestrial investigations in Europe with an overview of North America and Asia. Developments in environmental science 12: Forest Monitoring, 1st Edition edn. Elsevier PublishersGoogle Scholar
  22. Ferretti M, Calderisi M, Marchetto A, Waldner P, Thimonier A, Jonard M, Cools N, Rautio P, Clarke N, Hansen K, Merilä P, Potočić N (2014) Variables related to nitrogen deposition improve defoliation models for European forests. Ann Forest Sci. doi: 10.1007/s13595-014-0445-6 Google Scholar
  23. Fischer R, Aas W, De Vries W, Clarke N, Cudlin P, Leaver D, Lundin L, Matteucci G, Matyssek R, Mikkelsen TN, Mirtl M, Öztürk Y, Papale D, Potocic N, Simpson D, Tuovinen J-P, Vesala T, Wieser G, Paoletti E (2011) Towards a transnational system of supersites for forest monitoring and research in Europe—an overview on present state and future recommendations. iForest 4:167–171 [online 2011-08-11] URL: http://www.sisef.it/iforest/show.php?id=584 CrossRefGoogle Scholar
  24. Fischer R, Scheuschner T, Schlutow A, Granke O, Mues V, Olschofsky K, Nagel H-D (2014) Effects evaluation and risk assessment of air pollutants deposition at European monitoring sites of the ICP forests. In: Steyn DG, Builtjes PJH (eds) Air pollution modelling and its application: XXII. Proceedings of the 32nd NATO/SPS International Technical Meeting on Air Pollution and its Application. Utrecht, The Netherlands, 1–11 May 2012. Dordrecht: Springer Netherlands: 89–93Google Scholar
  25. Gandois L, Agnan Y, Leblond S, Séjalon-Delmas N, Le Roux G, Probst A (2014) Use of geochemical signatures, including rare earth elements, in mosses and lichens to assess spatial integration and the influence of forest environment. Atmos Environ 95:96–104CrossRefGoogle Scholar
  26. Gao T, Nielsen AB, Hedblom M (2015) Reviewing the strength of evidence of biodiversity indicators for forest ecosystems in Europe. Ecol Indic 57:420–434CrossRefGoogle Scholar
  27. Gaudio N, Belyazid S, Gendre X, Mansat A, Nicolas M, Rizzetto S, Sverdrup H, Probst A (2015) Combined effect of atmospheric nitrogen deposition and climate change on temperate forest soil biogeochemistry: a modelling approach. Ecol Model 306:24–34CrossRefGoogle Scholar
  28. Giordani P, Calatayud V, Stofer S, Seidling W, Granke O, Fischer R (2014) Detecting the nitrogen critical loads on European forests by means of epiphytic lichens. A signal-to-noise evaluation. For Ecol Manag 311:29–40CrossRefGoogle Scholar
  29. Gusev A (2015) Atmospheric deposition of heavy metals on the Baltic Sea. Baltic Sea Environment Fact Sheet 2015, Published: 27 October 2015. http://helcom.fi/baltic-sea-trends/environment-fact-sheets/hazardous-substances/atmospheric-deposition-of-heavy-metals-on-the-baltic-sea
  30. Harmens H, Norris DA, Cooper DM, Mills G, Steinnes E, Kubin E, Thöni L, Aboal JR, Alber R, Carballeira A, Coșkun M, De Temmerman L, Frolova M, Gonzáles-Miqueo L, Jeran Z, Leblond S, Liiv S, Maňkovská B, Pesch R, Poikolainen J, Rühling Å, Santamaria JM, Simonèiè P, Schröder W, Suchara I, Yurukova L, Zechmeister HG (2011) Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environ Pollut 159:2852–2860CrossRefPubMedGoogle Scholar
  31. Harmens H, Schnyder E, Thöni L, Cooper DM, Mills G, Leblond S, Mohr K, Poikolainen J, Santamaria J, Skudnik M, Zechmeister HG, Lindroos AJ, Hanus-Illnar A (2014) Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe. Environ Pollut 194:50–59CrossRefPubMedGoogle Scholar
  32. Harmens H, Mills G, Hayes F, Norris D, Sharps K (2015a) Twenty eight years of ICP vegetation. An overview of its activities. Ann Di Bot 5:31–43Google Scholar
  33. Harmens H, Norris DA, Sharps K, Mills G, Alber R, Aleksiayenak Y, Blum O, Cucu-Man SM, Dam M, De Temmerman L, Ene A, Fernández JA, Martinez-Abaigar J, Frontasyeva M, Godzik B, Jeran Z, Lazo P, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Pihl Karlsson G, Piispanen J, Poikolainen J, Santamaria JM, Skudnik M, Špirić Z, Stafilov T, Steinnes E, Stihi C, Suchara I, Thöni L, Todoran L, Yurukova L, Zechmeister HG (2015b) Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ Pollut 200:93–104CrossRefPubMedGoogle Scholar
  34. Harmens H, Schröder W, Zechmeister HG, Steinnes E, Frontasyeva M (2015c) Comments on Fernández JA, Boquete MT, Carballeira A, Aboal JR (2015 ). A critical review of protocols for moss biomonitoring of atmospheric deposition: Sampling and sample preparation. Sci Tot Environ 517:132-150. Sci Tot Environ 538:1024–1026CrossRefGoogle Scholar
  35. Hennemuth B, Bender S, Bülow K, Dreier N, Keup-Thiel E, Krüger O, Mudersbach C, Radermacher C, Schoetter R (2013) Statistical methods for the analysis of simulated and observed climate data, applied in projects and institutions dealing with climate change impact and adaptation. CSC Report 13, Climate Service Center, Germany:1–135Google Scholar
  36. Hilbrig L, Wellbrock N, Bielefeldt J (2014) Harmonisierte Bestandesinventur. Zweite Bundesweite Bodenzustandserhebung BZE II, Methode. Eberswalde: Johann Heinrich von Thünen-Institut. Thünen Working Paper 26:1–52Google Scholar
  37. Holy M, Pesch R, Schröder W, Harmens H, Ilyin I, Alber R, Aleksiayenak Y, Blum O, Coșkun M, Dam M, De Temmermann L, Fedorets N, Figueira R, Frolova M, Frontasyeva M, Goltsova N, González ML, Grodzińska K, Jeran Z, Korzekwa S, Krmar M, Kuni E, Kvietkus K, Larsen M, Leblond S, Liiv S, Magnússon S, Maňkovská B, Mocanu R, Piispanen J, Rühling Å, Santamaria JM, Steinnes E, Suchara I, Thöni L, Turcsányi G, Urumov V, Wolterbeek HT, Yurukova L, Zechmeister HG (2009) First thorough identification of factors associated with Cd, Hg and Pb concentrations in mosses sampled in the European surveys 1990, 1995, 2000 and 2005. J Atmos Chem 63:109–124CrossRefGoogle Scholar
  38. Hornsmann I, Pesch R, Schmidt G, Schröder W (2008) Calculation of an Ecological Land Classification of Europe (ELCE) and its application for optimising environmental monitoring networks. In: Car A, Griesebner G, Strobl J (eds) Geospatial crossroads @ GI Forum ‘08. Proceedings of the Geoinformatics Forum Salzburg, Wichmann, Heidelberg, pp 140–151Google Scholar
  39. ICP Vegetation (International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops) (2014) Monitoring of atmospheric deposition of heavy metals, nitrogen and POPs in Europe using bryophytes. Monitoring manual 2015 survey. United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution. ICP Vegetation Moss Survey Coordination Centre, Dubna, Russian Federation, and Programme Coordination Centre. Bangor, Wales, UK:1–26Google Scholar
  40. Ilyin I, Travnikov, O (2005) Modelling of heavy metal airborne pollution in Europe: evaluation of the model performance. EMEP/MSC-E Technical Report 8/2005. Moskow:1–121Google Scholar
  41. Jones L, Provins A, Holland M, Mills G, Hayes F, Emmett B, Hall J, Sheppard L, Smith R, Sutton M, Hicks K, Ashmore M, Haines-Young R, Harper-Simmonds L (2014) A review and application of the evidence for nitrogen impacts on ecosystem services. Ecosyst Serv 7:76–88CrossRefGoogle Scholar
  42. Lindenmayer D, Likens G (2011) Direct measurement versus surrogate indicator species for evaluating environmental change and biodiversity loss. Ecosyst 14:47–59CrossRefGoogle Scholar
  43. Lindenmayer D, Pierson J, Barton P, Beger M, Branquinho C, Calhoun A, Caro T, Greig H, Gross J, Heino J, Hunter M, Lane P, Longo C, Martin K, McDowell WH, Mellin C, Salo H, Tulloch A, Westgate M (2015) A new framework for selecting environmental surrogates. Sci Tot Environ 538:1029–1038CrossRefGoogle Scholar
  44. Lorenz M, Granke O (2009) Deposition measurements and critical loads calculations: monitoring data, results and perspective. iForest 2:11–14 [online: 2009-01-21] URL: http://www.sisef.it/iforest/show.php?id=478 CrossRefGoogle Scholar
  45. Lorenz M, Nagel HD, Granke O, Kraft P (2008) Critical loads and their exceedances at intensive forest monitoring sites in Europe. Environ Pollut 155:426–435CrossRefPubMedGoogle Scholar
  46. Meyer M (2017) Standortspezifisch differenzierte Erfassung atmosphärischer Stickstoff- und Schwermetalleinträge mittels Moosen unter Berücksichtigung des Traufeffektes und ergänzende Untersuchungen zur Beziehung von Stickstoffeinträgen und Begleitvegetation. Diss. Univ. Vechta:1–262 + Suppl.:1-86Google Scholar
  47. Meyer M, Schröder W, Pesch R, Steinnes E, Uggerud HT (2014) Spatial patterns and temporal trends of heavy metal concentrations in moss and surface soil specimens collected in Norway between 1990 and 2010. Environ Sci Eur 26:1–18CrossRefGoogle Scholar
  48. Meyer M, Schröder W, Nickel S, Leblond S, Lindroos AJ, Mohr K, Poikolainen J, Santamaria JM, Skudnik M, Thöni L, Beudert B, Dieffenbach-Fries H, Schulte-Bisping H, Zechmeister HG (2015a) Relevance of canopy drip for the accumulation of nitrogen in moss used as biomonitors for atmospheric nitrogen deposition in Europe. Sci Total Environ 538:600–610CrossRefPubMedGoogle Scholar
  49. Meyer M, Schröder W, Pesch R, Steinnes E, Uggerud HT (2015b) Multivariate association of regional factors with heavy metal concentrations in moss and natural surface soil sampled across Norway between 1990 and 2010. J Soils Sed 15:410–422CrossRefGoogle Scholar
  50. Meyer M, Schröder W, Hoffmann A (2015c) Effect of canopy drip on accumulation of nitrogen and heavy metals in moss, Pollution Aatmosphérique, N°226, available at: http://lodel.irevues.inist.fr/pollution-atmospherique/index.php?id=5159
  51. Michel A, Seidling W (eds) (2015) Forest condition in Europe: 2015 technical report of ICP Forests. Report under the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP). Vienna: BFW Austrian Research Centre for Forests. BFWDokumentation 21/2015:1–182Google Scholar
  52. Michel AK, Seidling W, Lorenz M, Becher G (eds) (2014) Forest condition in Europe 2013. Technical report of ICP forests under the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP). Johann Heinrich von Thünen-Institut, Eberswalde; Hamburg. Thünen Working Paper 19, 134 pGoogle Scholar
  53. Mohr K, Suda J, Kiehne S, Ahrens F, Landscheidt S, Pünjer L S (2011) Untersuchungen zur Bewertung der Auswirkungen von Ammoniak- und Stickstoff-Depositionen auf Pflanzen und Ökosysteme im Nahbereich von Stallanlagen (BESTAND). Abschlussbericht im Auftrag der Bundesanstalt für Landwirtschaft und Ernährung, Bonn, FKZ 2809HS015, 117 S.Google Scholar
  54. Müller SJ, Gütle DD, Jacquot J-P, Reski R (2015) Can mosses serve as model organisms for forest research? Ann Forest Sci DOI. doi: 10.1007/s13595-015-0468-7 Google Scholar
  55. Murray T (2005) PBT (persistent, bioaccumulative, and toxic) chemicals. In: Wexler P (ed) Encyclopedia of toxicology, 3rd edn. Academic Press, Oxford, pp 762–764Google Scholar
  56. Nickel S, Schröder W (2016) Integrative evaluation of data derived from biomonitoring and models indicating atmospheric deposition of heavy metals. Environ Sci Pollut Res:1–23. doi: 10.1007/s11356-015-6006-1 [published online 2016.01.07]
  57. Nickel S, Hertel A, Pesch R, Schröder W, Steinnes E, Uggerud HT (2014) Modelling and mapping spatio-temporal trends of heavy metal accumulation in moss and natural surface soil monitored 1990-2010 throughout Norway by multivariate generalized linear models and geostatistics. Atmos Environ 99:85–93CrossRefGoogle Scholar
  58. Nickel S, Hertel A, Pesch R, Schröder W, Steinnes E, Uggerud HT (2015) Correlating concentrations of heavy metals in atmospheric deposition with respective accumulation in moss and natural surface soil for ecological land classes in Norway between 1990 and 2010. Environ Sci Pollut Res 22(11):8488–8498CrossRefGoogle Scholar
  59. Nordberg GF, Nogawa K, Nordberg M (2014) Chapter 32—cadmium. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook on the toxicology of metals. 4th edn. Vol 2. Specific Metals. Elsevier Science, Amsterdam, pp 667–716Google Scholar
  60. Olsson U (2005) Confidence intervals for the mean of a log-normal distribution. J Stat Edu 13:1–8Google Scholar
  61. Pajak M, Jasik M (2011) Heavy metal (Zn, Pb, Cd) concentration in soil and moss (Pleurozium schreberii) in the Brynica district, southern Poland. iForest 4:176–180 [online 2011-08-11] URL: http://www.sisef.it/iforest/show.php?id=581 CrossRefGoogle Scholar
  62. Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman J-F (2015) Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front Plant Sci 6:1–16CrossRefGoogle Scholar
  63. Pesch R, Schröder W, Genssler L, Goeritz A, Holy M, Kleppin, L, Matter Y (2007) Moos-Monitoring 2005 / 2006: Schwermetalle IV und Gesamtstickstoff. Berlin (Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit. FuE-Vorhaben 205 64 200, Abschlussbericht, im Auftrag des Umweltbundesamtes); 90 S., 11 Tab., 2 Abb. (Texteil); 51 S. + 41 Karten, 34 Tabellen, 46 Diagramme (Anhangsteil)Google Scholar
  64. Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosyst 9:181–199CrossRefGoogle Scholar
  65. Rautio P, Fürst A, Stefan K, Raitio H, Bartels U, 2010 Sampling and analysis of needles and leaves. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, UNECE, ICP Forests Programme Co-ordinating Centre, Hamburg. Manual Part XII, 19 pp [http://www.icpforests.org/Manual.htm]
  66. Reinds GJ, de Vries W (2010) Uncertainties in critical loads and target loads of sulphur and nitrogen for European forests: analysis and quantification. Sci Total Environ 408:1960–1970CrossRefPubMedGoogle Scholar
  67. Rüdel H, Schröder W, von der Trenck KT, Wiesmüller GA (2009) Substance-related environmental monitoring. Work group ’Environmental Monitoring’ - position paper. Environ Sci Pollut Res 16(5):486–498CrossRefGoogle Scholar
  68. Ryaboshapko A, Russell Bullock Jr O, Christensen J, Cohen M, Dastoor A, Ilyin I, Petersen G, Syrakov D, Artz RS, Davignon D, Draxler RR, Munthe J (2007) Intercomparison study of atmospheric mercury models: 1. Comparison of models with short-term measurements Sci Tot Environ 376:228–240Google Scholar
  69. Saarikoski H, Barton DN, Mustajoki J, Keune H, Gomez Baggethun E, Langemeyer J (2015) Multi-criteria decision analysis (MCDA) in ecosystem service valuation. In: Potschin M, Jax K (Eds), OpenNESS ecosystem service reference book. EC FP7 Grant Agreement no. 308428. Available via: www.openness-project.eu/library/reference-book
  70. Sachs L, Hedderich J (2009) Angewandte Statistik. Methodensammlung mit R. Springer-Verlag, Berlin, Heidelberg, pp 1–813Google Scholar
  71. Schröder W, Pesch R (2007) Synthesizing bioaccumulation data from the German metals in mosses surveys and relating them to ecoregions. Sci Total Environ 374:311–327CrossRefGoogle Scholar
  72. Schröder W, Hornsmann I, Pesch R, Schmidt G, Markert B, Fränzle S, Wünschmann S, Heidenreich H (2007) Nitrogen and metals in two regions in Central Europe: significant differences in accumulation in mosses due to land use? Environ Monit Assess 133:495–505CrossRefPubMedGoogle Scholar
  73. Schröder W, Englert C, Pesch R, Zechmeister HG, Thöni L, Suchara I, Maňkovská B, Jeran Z, Harmens H, Grodzinska K, Alber R (2008) Metallakkumulation in Moosen: Standörtliche und regionale Randbedingungen des Biomonitoring von Luftverunreinigungen. Umweltwiss Schadstoffforsch – Z Umweltchem Ökotox 20:120–132CrossRefGoogle Scholar
  74. Schröder W, Pesch R, Schönrock S, Harmens H, Mills G, Fagerli H (2014) Mapping correlations between nitrogen concentrations in atmospheric deposition and mosses for natural landscapes in Europe. Ecol Indic 36:563–571CrossRefGoogle Scholar
  75. Schröder W, Nickel S, Jenssen M, Riediger J (2015) Methodology to assess and map the potential development of forest ecosystems exposed to climate change and atmospheric nitrogen deposition: a pilot study in Germany. Sci Total Environ 521-522:108–122CrossRefPubMedGoogle Scholar
  76. Schröder W, Nickel S, Schönrock S, Meyer M, Wosniok W, Harmens H, Frontasyeva MV, Alber R, Aleksiayenak J, Barandovski L, Danielsson H, de Temmermann L, Fernández Escribano A, Godzik B, Jeran Z, Pihl Karlsson G, Lazo P, Leblond S, Lindroos A-J, Liiv S, Magnússon SH, Mankovska B, Martínez-Abaigar J, Piispanen J, Poikolainen J, Popescu IV, Qarri F, Santamaria JM, Skudnik M, Špirić Z, Stafilov T, Steinnes E, Stihi C, Thöni L, Uggerud HT, Zechmeister HG (2016) Spatially valid data of atmospheric deposition of heavy metals and nitrogen derived by moss surveys for pollution risk assessments of ecosystems. Environ Sci Pollut Res 23:10457–10476Google Scholar
  77. Schutgens NAJ, Gryspeerdt E, Weigum N, Tsyro S, Goto D, Schulz M, Stier P (2016) Will a perfect model agree with perfect observations? The impact of spatial sampling. Atmos Chem Phys Discuss. doi: 10.5194/acp-2015-973 in reviewGoogle Scholar
  78. Seidling W, Sanders T, Akselsson C, Cools N, De Marco A, de Vos B, de Vries W, Etzold S, Ferretti M, Fischer U, Giordani P, Graf Pannatier E, Hansen K, Jonard M, Marchetto A, Nevenic R, Rautio P, Reinds G, Skudnik M, Solberg S, Skudnik M, Jeran Z, Batič F, Simončič P, Lojen S, Kastelec D (2014) Influence of canopy drip on the indicative N, S and δ15N content in moss Hypnum cupressiforme. Environ Pollut 190:27–35CrossRefGoogle Scholar
  79. Simpson D, Andersson C, Christensen JH, Engardt M, Geels C, Nyiri A, Posch M, Soares J, Sofiev M, Wind P, Langner J (2014) Impacts of climate and emission changes on nitrogen deposition in Europe: a multi-model study. Atmos Chem Phys 14:6995–7017CrossRefGoogle Scholar
  80. Skudnik M, Jeran Z, Batic F, Simončič P, Lojen S, Kastelec D (2014) Influence of canopy drip in the indicative N, S and δ15 content in moss Hypnum cupressiforme. Environ Pollut 190:27–35CrossRefPubMedGoogle Scholar
  81. Skudnik M, Jeran Z, Batič F, Simončič P, Kastelec D (2015) Potential environmental factors that influence the nitrogen concentration and δ15N values in the moss Hypnum cupressiforme collected inside and outside canopy drip lines. Environ Pollut 198:78–85CrossRefPubMedGoogle Scholar
  82. Špirić Z, Stafilov T, Vučković I, Glad M (2014) Study of nitrogen pollution in Croatia by moss biomonitoring and Kjeldahl method. J Environ Sci Health, Part A: Toxic / Hazard Subst Environ Eng 49:1402–1408CrossRefGoogle Scholar
  83. Stankovic S, Kalaba P, Stankovic AR (2014) Biota as toxic metal indicators. Environ Chem Lett 12:63–84CrossRefGoogle Scholar
  84. Steinnes E (1989) Cadmium in the terrestrial environment: impact of long-range atmospheric transport. Toxicol Environ Chem 19:139–145CrossRefGoogle Scholar
  85. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DS (2012) Heavy metals toxicity and the environment. Mol Clin Environ Toxicol Exp Suppl 101(2012):133–164 [Author manuscript; available in PMC 2014 August 26]CrossRefGoogle Scholar
  86. Tørseth K, Aas W, Breivik K, Fjæraa M, Fiebig M, Hjellbrekke AG, Lund Myhre C, Solberg S, Yttri KE (2012) Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972-2009. Atmos Chem Phys 12:5447–5481CrossRefGoogle Scholar
  87. UBA (2008) Umweltprobenbank des Bundes – Konzeption. Available at: http://www.umweltprobenbank.de/upb_static/fck/download/Konzeption_Okt_2008_de.pdf
  88. UNECE TF HM (Task Force on Heavy Metals) (2006) Best available scientific information on the effects of deposition of heavy metals from long-range atmospheric transport. Sufficiency and effectiveness review of the 1998 Protocol on Heavy Metals, UN/ECE Convention on Long-range Transboundary Air Pollution. Geneva:1–132 [http://www.unece.org/fileadmin/DAM/env/lrtap/TaskForce/tfhm/effects_of_deposition_of_HMs_final_June_16.pdf]
  89. UNEP (2010a) Final review of scientific information on cadmium. UNEP Chemicals Branch, Geneva, Switzerland, pp 1–118Google Scholar
  90. UNEP (2010b) Final review of scientific information on lead. UNEP Chemicals Branch, Geneva, Switzerland, pp 1–101Google Scholar
  91. UNEP (2013) Global mercury assessment 2013. Sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva, Switzerland, pp 1–32Google Scholar
  92. Verikas A, Gelzins A, Bacauskiene M (2011) Mining data with random forests: a survey and results of new tests. Pattern Recogn 44:330–349CrossRefGoogle Scholar
  93. Vučković I, Špirić Z, Stafilov T, Kušan V, Bačeva K (2013) The study on air pollution with nickel and vanadium in Croatia by using moss biomonitoring and ICP-AES. B Environ Contam Tox 91:481–487CrossRefGoogle Scholar
  94. Waldner P, Marchetto A, Thimonier A, SchmittM RM, Granke O, Mues V, Hansen K, Pihl Karlsson G, Žlindra D, Clarke N, Verstraeten A, Lazdins A, Schimming C, Iacoban C, Lindroos AJ, Vanguelova E, Benham S, Meesenburg H, Nicolas M, Kowalska A, Apuhtin V, Napa U, Lachmanová Z, Kristoefel F, Bleeker A, Ingerslev M, Vesterdal L, Molina J, Fischer U, Seidling W, Jonard M, O’Dea P, Johnson J, Fischer R, Lorenz M (2014) Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atmos Environ 95:363–374CrossRefGoogle Scholar
  95. Waldner P, Thimonier A, Graf Pannatier E, Etzold S, Schmitt M, Marchetto M, Rautio P, Derome K, Maileena Nieminen T, Nevalainen S, Lindroos A-J, Merilä P, Kindermann G, Neumann M, Cools N, de Vos B, Roskams P, Verstraeten A, Hansen K, Pihl Karlsson G, Dietrich H-P, Raspe S, Fischer R, Lorenz M, Iost S, Granke O, Sanders TGM, Michel A, Nagel H-D, Scheuschner T, Simoncic P, von Wilpert K, Meesenburg H, Fleck S, Benham S, Vanguelova E, Clarke N, Ingerslev M, Vesterdal L, Gundersen P, Stupak I, Jonard M, Potocic N, Minaya M (2015) Exceedance of critical loads and of critical limits impacts tree nutrition across Europe. Ann For Sci 72:929–939CrossRefGoogle Scholar
  96. Williams G (2011) Data mining with rattle and R. Springer, The art of excavating data for knowledge discovery 374 ppCrossRefGoogle Scholar
  97. Zhang K, Wan H, Liu X, Ghan SJ, Kooperman GJ, Ma PL, Rasch PJ, Neubauer D, Lohmann U (2014) Technical note: on the use of nudging for aerosol–climate model intercomparison studies. Atmos Chem Phys 14:8631–8645CrossRefGoogle Scholar
  98. Ziegler A, König IR (2014) Mining data with random forests: current options for real-world applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 4:55–63Google Scholar
  99. Žlindra D, Eler K, Clarke N, Simončič P (2011) Towards harmonization of forest deposition collectors—case study of comparing collector designs. iForest 4:218–225. doi: 10.3832/ ifor0586-004 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2017

Authors and Affiliations

  • Winfried Schröder
    • 1
  • Stefan Nickel
    • 1
  • Simon Schönrock
    • 1
  • Roman Schmalfuß
    • 1
  • Werner Wosniok
    • 2
  • Michaela Meyer
    • 1
  • Harry Harmens
    • 3
  • Marina V. Frontasyeva
    • 4
  • Renate Alber
    • 5
  • Julia Aleksiayenak
    • 6
  • Lambe Barandovski
    • 7
  • Oleg Blum
    • 8
  • Alejo Carballeira
    • 9
  • Maria Dam
    • 10
  • Helena Danielsson
    • 11
  • Ludwig De Temmermann
    • 12
  • Anatoly M. Dunaev
    • 13
  • Barbara Godzik
    • 14
  • Katrin Hoydal
    • 10
  • Zvonka Jeran
    • 15
  • Gunilla Pihl Karlsson
    • 11
  • Pranvera Lazo
    • 16
  • Sebastien Leblond
    • 17
  • Jussi Lindroos
    • 18
  • Siiri Liiv
    • 19
  • Sigurður H. Magnússon
    • 20
  • Blanka Mankovska
    • 21
  • Encarnación Núñez-Olivera
    • 22
  • Juha Piispanen
    • 23
  • Jarmo Poikolainen
    • 23
  • Ion V. Popescu
    • 24
  • Flora Qarri
    • 25
  • Jesus Miguel Santamaria
    • 26
  • Mitja Skudnik
    • 27
  • Zdravko Špirić
    • 28
  • Trajce Stafilov
    • 7
  • Eiliv Steinnes
    • 29
  • Claudia Stihi
    • 24
  • Ivan Suchara
    • 30
  • Lotti Thöni
    • 31
  • Hilde Thelle Uggerud
    • 32
  • Harald G. Zechmeister
    • 33
  1. 1.Chair of Landscape EcologyUniversity of VechtaVechtaGermany
  2. 2.Institute for StatisticsUniversity of BremenBremenGermany
  3. 3.ICP Vegetation Programme Coordination Centre, Centre for Ecology & Hydrology, Environment Centre WalesBangorUK
  4. 4.Moss Survey Coordination Centre, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear ResearchMoscowRussia
  5. 5.Environmental Agency of BolzanoLaivesItaly
  6. 6.International Sakharov Environmental UniversityMinskBelarus
  7. 7.Ss. Cyril and Methodius UniversitySkopjeMacedonia
  8. 8.National Botanical GardenAcademy of Science of UkraineKievUkraine
  9. 9.Ecologia Facultad De BiologiaUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  10. 10.Environment AgencyArgirFaroe Islands
  11. 11.IVL Swedish Environmental Research InstituteGöteborgSweden
  12. 12.Veterinary and Agrochemical Research Centre CODA-CERVATervurenBelgium
  13. 13.Ivanovo State University of Chemistry and TechnologyIvanovoRussia
  14. 14.W. Szafer Institute of Botany, Polish Academy of SciencesKrakówPoland
  15. 15.Jožef Stefan InstituteLjubljanaSlovenia
  16. 16.University of TiranaTiranaAlbania
  17. 17.National Museum of Natural HistoryParisFrance
  18. 18.Natural Resources InstituteHelsinkiFinland
  19. 19.Tallinn Botanic GardenTallinnEstonia
  20. 20.Icelandic Institute of Natural HistoryGarðabærIceland
  21. 21.Institute of Landscape EcologySlovak Academy of SciencesBratislavaSlovakia
  22. 22.Universidad de La RiojaLogroñoSpain
  23. 23.Natural Resources Institute Finland (Luke)OulouFinland
  24. 24.Valahia University of TargovisteTargovisteRomania
  25. 25.University of VloraVlorëAlbania
  26. 26.University of NavarraNavarraSpain
  27. 27.Slovenian Forestry InstituteLjubljanaSlovenia
  28. 28.Green Infrastructure LtdZagrebCroatia
  29. 29.Norwegian University of Science and TechnologyTrondheimNorway
  30. 30.Silva Tarouca Research Institute for Landscape and Ornamental GardeningPrůhoniceCzech Republic
  31. 31.FUB-Research Group for Environmental MonitoringRapperswilSwitzerland
  32. 32.Norwegian Institute for Air ResearchKjellerNorway
  33. 33.University of ViennaWienAustria

Personalised recommendations