Annals of Forest Science

, 74:23

Effect of species grouping and site variables on aboveground biomass models for lowland tropical forests of the Indo-Malay region

  • Solichin Manuri
  • Cris Brack
  • Teddy Rusolono
  • Fatmi Noor’an
  • Louis Verchot
  • Sandhi I. Maulana
  • Wahyu C . Adinugroho
  • Hery Kurniawan
  • Dian Wulansih Sukisno
  • Gita Ardia Kusuma
  • Arif Budiman
  • Rahmad Supri Anggono
  • Chairil Anwar Siregar
  • Onrizal Onrizal
  • Dhany Yuniati
  • Emma Soraya
Original Paper

Abstract

Key message

This study assessed the effect of ecological variables on tree allometry and provides more accurate aboveground biomass (AGB) models through the involvement of large samples representing major islands, biogeographical zones and various succession and degradation levels of natural lowland forests in the Indo-Malay region. The only additional variable that significantly and largely contributed to explaining AGB variation is grouping based on wood-density classes.

Context

There is a need for an AGB equation at tree level for the lowland tropical forests of the Indo-Malay region. In this respect, the influence of geographical, climatic and ecological gradients needs to be assessed.

Aims

The overall aim of this research is to provide a regional-scale analysis of allometric models for tree AGB of lowland tropical forests in the Indo-Malay region.

Methods

A dataset of 1300 harvested trees (5 cm ≤ trunk diameter ≤ 172 cm) was collected from a wide range of succession and degradation levels of natural lowland forests through direct measurement and an intensive literature search of principally grey publications. We performed ANCOVA to assess possible irregular datasets from the 43 study sites. After ANCOVA, a 1201-tree dataset was selected for the development of allometric equations. We tested whether the variables related to climate, geographical region and species grouping affected tree allometry in the lowland forest of the Indo-Malay region.

Results

Climatic and major taxon-based variables were not significant in explaining AGB variations. Biogeographical zone was a significant variable explaining AGB variation, but it made only a minor contribution on the accuracy of AGB models. The biogeographical effect on AGB variation is more indirect than its effect on species and stand characteristics. In contrast, the integration of wood-density classes improved the models significantly.

Conclusion

Our AGB models outperformed existing local models and will be useful for improving the accuracy on the estimation of greenhouse gas emissions from deforestation and forest degradation in tropical forests. However, more samples of large trees are required to improve our understanding of biomass distribution across various forest types and along geographical and elevation gradients.

Keywords

Tree AGB Allometric equation Regional model Destructive sampling Biogeographical zones 

Supplementary material

13595_2017_618_MOESM1_ESM.docx (254 kb)
ESM 1(DOCX 253 kb)

References

  1. Alvarez E, Rodríguez L, Duque A, Saldarriaga J, Cabrera K, de las Salas G, del Valle I, Lema A, Moreno F, Orrego S (2012) Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For Ecol Manag 267:297–308. doi:10.1016/j.foreco.2011.12.013 CrossRefGoogle Scholar
  2. Anitha K, Verchot LV, Joseph S, Herold M, Manuri S, Avitabile V (2015) A review of forest and tree plantation biomass equations in Indonesia. Ann Forest Sci 72:1–17CrossRefGoogle Scholar
  3. Avery TE, HE Burkhart (1983) FOREST MEASUREMENTS, Mcgraw-hill, New YorkGoogle Scholar
  4. Bailey RL (1980) The potential of Weibull-type functions as flexible growth curves: discussion. Can J For Res 10:117–118CrossRefGoogle Scholar
  5. Banin L, Feldpausch T, Phillips O, Baker T, Lloyd J, Affum-Baffoe K, Arets E, Berry N, Bradford M, Brienen R (2012) What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob Ecol Biogeogr 21:1179–1190CrossRefGoogle Scholar
  6. Baskerville G (1972) Use of logarithmic regression in the estimation of plant biomass. Can J For Res 2:49–53CrossRefGoogle Scholar
  7. Basuki TM, van Laake PE, Skidmore AK, Hussin YA (2009) Allometric equations for estimating the above-ground biomass in tropical lowland dipterocarp forests. For Ecol Manag 257:1684–1694. doi:10.1016/j.foreco.2009.01.027 CrossRefGoogle Scholar
  8. Brown S (1997) Estimating biomass and biomass change of tropical forests a primer. Food and Agriculture Organization of the United NationsGoogle Scholar
  9. Brown S, Gillespie AJ, Lugo AE (1989) Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci 35:881–902Google Scholar
  10. BSN (2011) Penyusunan persamaan alometrik untuk penaksiran cadangan karbon hutan berdasar pengukuran lapangan (ground based forest carbon accounting). Standar Nasional Indonesia SNI 7725:2011Google Scholar
  11. Chave J, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. doi:10.1007/s00442-005-0100-x CrossRefPubMedGoogle Scholar
  12. Chave J, Muller-Landau HC, Baker TR, Easdale TA, Ht S, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–2367CrossRefPubMedGoogle Scholar
  13. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366CrossRefPubMedGoogle Scholar
  14. Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol 20:3177–3190CrossRefPubMedGoogle Scholar
  15. Clark DB, Kellner JR (2012) Tropical forest biomass estimation and the fallacy of misplaced concreteness. J Veg Sci 23:1191–1196CrossRefGoogle Scholar
  16. Clifford D, Cressie N, England JR, Roxburgh SH, Paul KI (2013) Correction factors for unbiased, efficient estimation and prediction of biomass from log–log allometric models. For Ecol Manag 310:375–381. doi:10.1016/j.foreco.2013.08.041 CrossRefGoogle Scholar
  17. Cramer W, A Bondeau, S Schaphoff, W Lucht, B Smith, S Sitch, e Institutionen för naturgeografi och, u Lunds, f Naturvetenskapliga, U Lund, S Faculty of, G Dept of Physical, S Ecosystems (2004) Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 359:331–343. doi: 10.1098/rstb.2003.1428
  18. Durán SM, Sánchez-Azofeifa GA, Rios RS, Gianoli E (2015) The relative importance of climate, stand variables and liana abundance for carbon storage in tropical forests. Glob Ecol Biogeogr 24:939–949CrossRefGoogle Scholar
  19. FAO (2015) Global Forest Resources Assessment 2015: How are the world’s forests changing? Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  20. Feldpausch TR, J Lloyd, SL Lewis, RJ Brienen, M Gloor, A Monteagudo Mendoza, G Lopez-Gonzalez, L Banin, K Abu Salim, K Affum-Baffoe (2012) Tree height integrated into pantropical forest biomass estimates. Biogeosciences 3381–3403Google Scholar
  21. Goodman RC, Phillips OL, Baker TR (2014) The importance of crown dimensions to improve tropical tree biomass estimates. Ecol Appl 24:680–698CrossRefPubMedGoogle Scholar
  22. Gujarati D (2014) Econometrics by example. Palgrave Macmillan, New YorkGoogle Scholar
  23. Hashimoto T, Tange T, Masumori M, Yagi H, Sasaki S, Kojima K (2004) Allometric equations for pioneer tree species and estimation of the aboveground biomass of a tropical secondary forest in East Kalimantan. Tropics 14:123–130CrossRefGoogle Scholar
  24. He D, Deane DC (2016) The relationship between trunk-and twigwood density shifts with tree size and species stature. For Ecol Manag 372:137–142CrossRefGoogle Scholar
  25. Henry M, Besnard A, Asante W, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-Andre L (2010) Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manag 260:1375–1388CrossRefGoogle Scholar
  26. Henry M, Jara MC, Réjou-Méchain M, Piotto D, Fuentes JMM, Wayson C, Guier FA, Lombis HC, López EC, Lara RC (2015) Recommendations for the use of tree models to estimate national forest biomass and assess their uncertainty. Ann Forest Sci 72:769–777CrossRefGoogle Scholar
  27. Higgins MA, Ruokolainen K (2004) Rapid tropical forest inventory: a comparison of techniques based on inventory data from western Amazonia. Conserv Biol 18:799–811CrossRefGoogle Scholar
  28. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276 CrossRefGoogle Scholar
  29. Ishihara MI, Utsugi H, Tanouchi H, Aiba M, Kurokawa H, Onoda Y, Nagano M, Umehara T, Ando M, Miyata R (2015) Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests. Ecol Appl 25:1433–1446CrossRefPubMedGoogle Scholar
  30. Jepson P, Jarvie JK, MacKinnon K, Monk KA (2001) The end for Indonesia’s lowland forests? Science 292:859–861CrossRefPubMedGoogle Scholar
  31. Kartawinata K (1990) A review of natural vegetation studies in Malesia, with special reference to Indonesia. The plant diversity of Malesia Proc symposium, Leiden 1989:121–132CrossRefGoogle Scholar
  32. Kenzo T, Takahashi N, Okamoto M, Tanaka-Oda A, Sakurai K, Ninomiya I, Ichie T, Hattori D, Itioka T, Handa C, Ohkubo T, Kendawang JJ, Nakamura M, Sakaguchi M (2009) Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. J Trop Ecol 25:371–386. doi:10.1017/s0266467409006129 CrossRefGoogle Scholar
  33. Kotowska MM, Leuschner C, Triadiati T, Meriem S, Hertel D (2015) Quantifying above-and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia). Glob Chang Biol 21:3620–3634CrossRefPubMedGoogle Scholar
  34. Ledo A, Cornulier T, Illian JB, Iida Y, Kassim AR, Burslem DF (2016) Re-evaluation of individual diameter: height allometric models to improve biomass estimation of tropical trees. Ecol Appl 26:2374–2380CrossRefPubMedGoogle Scholar
  35. MacKinnon K (1996) The ecology of Kalimantan. Oxford University Press, Hong KongGoogle Scholar
  36. Manuri S, Brack C, Nugroho NP, Hergoualc’h K, Novita N, Dotzauer H, Verchot L, Putra CAS, Widyasari E (2014) Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. For Ecol Manag 334:241–253CrossRefGoogle Scholar
  37. Manuri S, Brack C, Noor’an F, Rusolono T, Anggraini SM, Dotzauer H, Kumara I (2016) Improved allometric equations for tree aboveground biomass estimation in tropical dipterocarp forests of Kalimantan, Indonesia. Forest Ecosystems 3:28CrossRefGoogle Scholar
  38. Marshall AJ, BM Beehler (2007) Ecology of Indonesian Papua Part One, Tuttle PublishingGoogle Scholar
  39. Martawijaya A, I Kartasujana, K Kadir, S Prawira (2005) Atlas kayu Indonesia Jilid II: 91–95. Badan Penelitian dan Pengembangan Kehutanan, Departemen Kehutanan Bogor Edisi revisiGoogle Scholar
  40. Mayr E (1944) Wallace’s line in the light of recent zoogeographic studies. Q Rev Biol 19:1–14CrossRefGoogle Scholar
  41. McNicol IM, Berry NJ, Bruun TB, Hergoualc’h K, Mertz O, de Neergaard A, Ryan CM (2015) Development of allometric models for above and belowground biomass in swidden cultivation fallows of northern Laos. For Ecol Manag 357:104–116CrossRefGoogle Scholar
  42. MoEF (2015) National Forest Reference Emission Level for Deforestation and Forest Degradation: In the Context of Decision 1/CP.16 para 70 UNFCCC (Encourages developing country Parties to contribute to mitigation actions in the forest sector). Directorate General of Climate Change The Ministry of Environment and Forestry IndonesiaGoogle Scholar
  43. MoF (2007) Pedoman Inventarisasi Hutan Menyeluruh Berkala (IHMB) pada Usaha Pemanfaatan Hasil Hutan pada Hutan Produksi. Ministry of Forestry, Republic of Indonesia, Jakarta Permenhut No 34/2007Google Scholar
  44. Monk KA, de Fretes Y, Reksodiharjo-Lilley (1997) The ecology of Nusa Tenggara and Maluku. Indonesian Ministry of Environment and Dalhausie University. Halifax, Nova ScotiaGoogle Scholar
  45. Muller-Landau HC (2004) Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica 36:20–32Google Scholar
  46. Neter J, MH Kutner, CJ Nachtsheim, W Wasserman (1996) Applied linear statistical models, Irwin ChicagoGoogle Scholar
  47. Olagoke A, Proisy C, Féret J-B, Blanchard E, Fromard F, Mehlig U, de Menezes MM, Dos Santos VF, Berger U (2016) Extended biomass allometric equations for large mangrove trees from terrestrial LiDAR data. Trees 30:935–947CrossRefGoogle Scholar
  48. Onoda Y, Richards AE, Westoby M (2010) The relationship between stem biomechanics and wood density is modified by rainfall in 32 Australian woody plant species. New Phytol 185:493–501CrossRefPubMedGoogle Scholar
  49. Overman JPM, Witte HJL, Saldarriaga JG (1994) Evaluation of regression models for above-ground biomass determination in Amazon rainforest. J Trop Ecol 10:207–218CrossRefGoogle Scholar
  50. Paul KI, Roxburgh SH, Ritson P, Brooksbank K, England JR, Larmour JS, John Raison R, Peck A, Wildy DT, Sudmeyer RA, Giles R, Carter J, Bennett R, Mendham DS, Huxtable D, Bartle JR (2013) Testing allometric equations for prediction of above-ground biomass of mallee eucalypts in southern Australia. For Ecol Manag 310:1005–1015. doi:10.1016/j.foreco.2013.09.040 CrossRefGoogle Scholar
  51. Paul KI, Roxburgh SH, Chave J, England JR, Zerihun A, Specht A, Lewis T, Bennett LT, Baker TG, Adams MA, Huxtable D, Montagu KD, Falster DS, Feller M, Sochacki S, Ritson P, Bastin G, Bartle J, Wildy D, Hobbs T, Larmour J, Waterworth R, Stewart HTL, Jonson J, Forrester DI, Applegate G, Mendham D, Bradford M, O'Grady A, Green D, Sudmeyer R, Rance SJ, Turner J, Barton C, Wenk EH, Grove T, Attiwill PM, Pinkard E, Butler D, Brooksbank K, Spencer B, Snowdon P, O'Brien N, Battaglia M, Cameron DM, Hamilton S, McAuthur G, Sinclair J (2016) Testing the generality of above-ground biomass allometry across plant functional types at the continent scale. Glob Chang Biol 22:2106–2124. doi:10.1111/gcb.13201 CrossRefPubMedGoogle Scholar
  52. Pfeifer N, B Gorte, D Winterhalder (2004) Automatic reconstruction of single trees from terrestrial laser scanner data. Proceedings of 20th ISPRS Congress, pp. 114–119Google Scholar
  53. Picard N, Rutishauser E, Ploton P, Ngomanda A, Henry M (2015) Should tree biomass allometry be restricted to power models? For Ecol Manag 353:156–163CrossRefGoogle Scholar
  54. Putra CAS, Manuri S, Heriyanto SC (2011) Pohon-Pohon Hutan Alam Rawa Gambut Merang. MRPP-GIZ, PalembangGoogle Scholar
  55. Raumonen P, Kaasalainen M, Åkerblom M, Kaasalainen S, Kaartinen H, Vastaranta M, Holopainen M, Disney M, Lewis P (2013) Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens 5:491–520CrossRefGoogle Scholar
  56. R-Development-Core T (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  57. Sall J (2002) Monte carlo calibration of distributions of partition statistics. SAS Institute IncGoogle Scholar
  58. SAS II (2015) Using JMP 12. SAS Institute Inc, Cary, NCGoogle Scholar
  59. Shen H, Zhu Z (2008) Efficient mean estimation in log-normal linear models. Journal of Statistical Planning and Inference 138:552–567CrossRefGoogle Scholar
  60. Sileshi GW (2014) A critical review of forest biomass estimation models, common mistakes and corrective measures. For Ecol Manag 329:237–254CrossRefGoogle Scholar
  61. Slik JWF (2006) Estimating species-specific wood density from the genus average in Indonesian trees. J Trop Ecol 22:481–482. doi:10.1017/s0266467406003324 CrossRefGoogle Scholar
  62. Slik JWF (2009 onwards) Plants of Southeast Asia. http://www.asianplant.net (accessed 1 May 2016)
  63. Slik JWF, Beek VM, Breman FC, Bernard CS, Eichhorn KAO (2008) Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest. Oecologia 158:579–588. doi:10.1007/s00442-008-1163-2 CrossRefPubMedGoogle Scholar
  64. Slik J, Aiba SI, Brearley FQ, Cannon CH, Forshed O, Kitayama K, Nagamasu H, Nilus R, Payne J, Paoli G (2010) Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo's tropical forests. Glob Ecol Biogeogr 19:50–60CrossRefGoogle Scholar
  65. Snowdon P (1991) A ratio estimator for bias correction in logarithmic regressions. Can J For Res 21:720–724CrossRefGoogle Scholar
  66. The Plant List (2013) The Plant List Version 1.1. http://www.theplantlist.org (accessed 1 May 2016)
  67. Van Welzen PC, Parnell JAN, Slik JWF (2011) Wallace’s line and plant distributions: two or three phytogeographical areas and where to group Java? Biol J Linn Soc 103:531–545. doi:10.1111/j.1095-8312.2011.01647.x CrossRefGoogle Scholar
  68. Vieilledent G, Vaudry R, Andriamanohisoa SFD, Rakotonarivo OS, Randrianasolo HZ, Razafindrabe HN, Rakotoarivony CB, Ebeling J, Rasamoelina M (2012) A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol Appl 22:572–583. doi:10.1890/11-0039.1 CrossRefPubMedGoogle Scholar
  69. Whitten T (1987) The ecology of Sumatra. Gadjah Mada University Press, YogyakartaGoogle Scholar
  70. Williamson GB, Wiemann MC (2010) Measuring wood specific gravity… correctly. Am J Bot 97:519–524CrossRefPubMedGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2017

Authors and Affiliations

  • Solichin Manuri
    • 1
    • 2
  • Cris Brack
    • 1
  • Teddy Rusolono
    • 3
  • Fatmi Noor’an
    • 4
  • Louis Verchot
    • 5
  • Sandhi I. Maulana
    • 6
  • Wahyu C . Adinugroho
    • 7
  • Hery Kurniawan
    • 8
  • Dian Wulansih Sukisno
    • 9
  • Gita Ardia Kusuma
    • 10
  • Arif Budiman
    • 11
  • Rahmad Supri Anggono
    • 12
  • Chairil Anwar Siregar
    • 7
  • Onrizal Onrizal
    • 13
  • Dhany Yuniati
    • 8
  • Emma Soraya
    • 14
  1. 1.Fenner School of Environment and SocietyThe Australian National UniversityACTAustralia
  2. 2.MAP InstituteBogorIndonesia
  3. 3.Faculty of ForestryBogor Agricultural UniversityBogorIndonesia
  4. 4.Dipterocarps Research CenterForest Research Development and Innovation AgencySamarindaIndonesia
  5. 5.Center for International Forestry Research (CIFOR)BogorIndonesia
  6. 6.Forestry Research Institute ManokwariMinistry of Environment and ForestryManokwariIndonesia
  7. 7.Forest Research and Development AgencyMinistry of Environment and ForestryBogorIndonesia
  8. 8.Forestry Research Institute KupangMinistry of Environment and ForestryNusa Tenggara TimurIndonesia
  9. 9.Implementing Agency for Agricultural Extension and Food SecurityEmpat Lawang DistrictIndonesia
  10. 10.Ministry of Environment and ForestryJakartaIndonesia
  11. 11.Sustainable Palm Oil Initiative Project-UNDPJakarta PusatIndonesia
  12. 12.Alba Community ForestSemarangIndonesia
  13. 13.Forestry Science Department, Faculty of AgricultureNorth Sumatra UniversityMedanIndonesia
  14. 14.Faculty of ForestryGadjah Mada UniversityJogjakartaIndonesia

Personalised recommendations