Advertisement

Annals of Forest Science

, Volume 72, Issue 7, pp 929–939 | Cite as

Exceedance of critical loads and of critical limits impacts tree nutrition across Europe

  • Peter WaldnerEmail author
  • Anne Thimonier
  • Elisabeth Graf Pannatier
  • Sophia Etzold
  • Maria Schmitt
  • Aldo Marchetto
  • Pasi Rautio
  • Kirsti Derome
  • Tiina Maileena Nieminen
  • Seppo Nevalainen
  • Antti-Jussi Lindroos
  • Päivi Merilä
  • Georg Kindermann
  • Markus Neumann
  • Nathalie Cools
  • Bruno de Vos
  • Peter Roskams
  • Arne Verstraeten
  • Karin Hansen
  • Gunilla Pihl Karlsson
  • Hans-Peter Dietrich
  • Stephan Raspe
  • Richard Fischer
  • Martin Lorenz
  • Susanne Iost
  • Oliver Granke
  • Tanja G. M. Sanders
  • Alexa Michel
  • Hans-Dieter Nagel
  • Thomas Scheuschner
  • Primož Simončič
  • Klaus von Wilpert
  • Henning Meesenburg
  • Stefan Fleck
  • Sue Benham
  • Elena Vanguelova
  • Nicholas Clarke
  • Morten Ingerslev
  • Lars Vesterdal
  • Per Gundersen
  • Inge Stupak
  • Mathieu Jonard
  • Nenad Potočić
  • Mayte Minaya
Original Paper

Abstract

Key message

Exceedance of critical limits in soil solution samples was more frequent in intensively monitored forest plots across Europe with critical loads for acidity and eutrophication exceeded compared to other plots from the same network. Elevated inorganic nitrogen concentrations in soil solution tended to be related to less favourable nutritional status.

Context

Forests have been exposed to elevated atmospheric deposition of acidifying and eutrophying sulphur and nitrogen compounds for decades. Critical loads have been identified, below which damage due to acidification and eutrophication are not expected to occur.

Aims

We explored the relationship between the exceedance of critical loads and inorganic nitrogen concentration, the base cation to aluminium ratio in soil solutions, as well as the nutritional status of trees.

Methods

We used recent data describing deposition, elemental concentrations in soil solution and foliage, as well as the level of damage to foliage recorded at forest plots of the ICP Forests intensive monitoring network across Europe.

Results

Critical loads for inorganic nitrogen deposition were exceeded on about a third to half of the forest plots. Elevated inorganic nitrogen concentrations in soil solution occurred more frequently among these plots. Indications of nutrient imbalances, such as low magnesium concentration in foliage or discolouration of needles and leaves, were seldom but appeared more frequently on plots where the critical limits for soil solution were exceeded.

Conclusion

The findings support the hypothesis that elevated nitrogen and sulphur deposition can lead to imbalances in tree nutrition.

Keywords

Inorganic nitrogen concentration in soil solution Base cation to aluminium ratio Tree nutrition Foliage ICP Forests 

Notes

Acknowledgments

We gratefully acknowledge the Programme Coordinating Centre of ICP Forests and all observers, technicians and scientists who performed sampling in the fields, analyses and data handling. The evaluation was mainly based on data that are part of the UNECE ICP Forests PCC Collaborative Database (see http://icp-forests.net). In particular, data from France (14 plots), Belgium (7 plots), the Netherlands (3 plots), Germany (77 plots), Italy (10 plots), the United Kingdom (8 plots), Ireland (2 plots), Denmark (6 plots), Greece (3 plots), Spain (3 plots), Austria (2 plots), Finland (17 plots), Switzerland (7 plots), Hungary (1 plot), Romania (4 plots), Poland (1 plot), the Slovak Republic (5 plots), Norway (8 plots), Lithuania (2 plots), the Czech Republic (11 plots), Estonia (5 plots), Slovenia (2 plots), Latvia (1 plot), Cyprus (2 plots) and Sweden (43 plots) were part of the analyses. In addition, throughfall data from the SWETHRO network were used for the 43 plots in Sweden. For soil, we used and acknowledge the aggregated forest soil condition database (AFSCDB.LII.2.1) compiled by the ICP Forests Forest Soil Coordinating Centre. The long-term collection of forest monitoring data was to a large extent funded by national research institutions and ministries, with support from governmental bodies, services and land owners. It was partially funded by the European Union under the Regulation (EC) No. 2152/2003 concerning monitoring of forests and environmental interactions in the Community (Forest Focus) and the project LIFE 07 ENV/D/000218 “Further Development and Implementation of an EU-level Forest Monitoring System (FutMon)”. We gratefully acknowledge the contribution of Matthias Dobbertin who passed away within the duration of this study.

References

  1. Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–386CrossRefGoogle Scholar
  2. Augustin S, Bolte A, Holzhausen M, Wolff B (2005) Exceedance of critical loads of nitrogen and sulphur and its relation to forest conditions. Eur J For Res 124:289–300CrossRefGoogle Scholar
  3. Bobbink R, Hettelingh J-P (2011) Review and revision of empirical critical loads and dose–response relationships, Coordination Centre for Effects, National Institute for Public Health and the Environment (RIVM), www.rivm.nl/cce
  4. Cools N, de Vos B (2010) Availability and evaluation of European forest soil monitoring data in the study on the effects of air pollution on forests. iForest 4:205–211CrossRefGoogle Scholar
  5. Cronan CS, Grigal DF (1995) Use of calcium aluminum ratios as indicators of stress in forest ecosystems. J Environ Qual 24:209–266CrossRefGoogle Scholar
  6. de Vries W, Vel E, Reinds GJ, Deelstra H, Klap JM, Leeters EEJM, Hendriks CMA, Kerkvoorden M, Landmann G, Herkendell J, Haussmann T, Erisman JW (2003) Intensive monitoring of forest ecosystems in Europe: 1. Objectives, set-up and evaluation strategy. For Ecol Manag 174:77–95CrossRefGoogle Scholar
  7. de Wit HA, Eldhuset TD, Mulder J (2010) Dissolved Al reduces Mg uptake in Norway spruce forest: results from a long-term field manipulation experiment in Norway. For Ecol Manag 259:2072–2082CrossRefGoogle Scholar
  8. Dise NB, Rothwell JJ, Gauci V, van der Salm C, de Vries W (2009) Predicting dissolved inorganic nitrogen leaching in European forests using two independent databases. Sci Total Environ 407:1798–1808CrossRefGoogle Scholar
  9. Ferretti M, Fischer R (2013) Forest monitoring: Methods for terrestrial investigations in Europe with an overview of North America and Asia, vol 12, Developments in Environmental Science. Elsevier, Oxford, 507 p Google Scholar
  10. Graf Pannatier E, Thimonier A, Schmitt M, Walthert L, Waldner P (2011) A decade of monitoring at Swiss Long-term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity? Environ Monit Assess 174:3–30CrossRefGoogle Scholar
  11. Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperate forests - effects of air pollution and forest management. Environ Rev 14:1–57CrossRefGoogle Scholar
  12. Hansen K, Vesterdal L, Bastrup-Birk A, Bille-Hansen J (2007) Are indicators for critical load exceedance related to forest condition. Water Air Soil Pollut 183:293–308CrossRefGoogle Scholar
  13. ICP Forests (2010) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). Convention on Long-Range Transboundary Air Pollution (LRTAP). UNECE, Hamburg, 578 pGoogle Scholar
  14. Iost S, Rautio P, Lindroos A-J (2012) Spatio-temporal trends in soil Solution Bc/Al and N in relation to critical limits in European forest soils. Water Air Soil Pollut 223:1467–1479CrossRefGoogle Scholar
  15. Jonard M, Fürst A, Verstraeten A, Thimonier A, Timmermann V, Potočić N, Waldner P, Benham S, Hansen K, Merilä P, Ponette Q, de la Cruz AC, Roskams P, Nicolas M, Croisé L, Ingerslev M, Matteucci G, Decinti B, Bascietto M, Rautio P (2015) Tree mineral nutrition is deteriorating in Europe. Glob Chang Biol 21:418–430CrossRefGoogle Scholar
  16. Lange H, Solberg S, Clarke N (2006) Aluminium dynamics in forest soil waters in Norway. Sci Total Environ 367:942–957CrossRefGoogle Scholar
  17. Lorenz M, Nagel H-D, Granke O, Kraft P (2008) Critical loads and their exceedances at intensive forest monitoring sites in Europe. Environ Pollut 155:426–435CrossRefGoogle Scholar
  18. Marchetto A, Arisci S, Tartari G, Matteucci G, de Cinti B, Fabbio G (2010) Nitrogen deposition and critical loads in the FutMon plots in Italy. CNR Institute for Ecosystem Studies, Verbania Pallanza, 25 p Google Scholar
  19. Mellert K, Göttlein A (2012) Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references. Eur J For Res 131:1461–1472CrossRefGoogle Scholar
  20. Nagel H-D, Scheuschner T, Schlutow A, Granke O, Clarke N, Fischer R (2011) Exceedance of critical loads for acidity and nitrogen and scenarios for the future development of soil solution chemistry. In: R Fischer, M Lorenz (eds.), Forest Condition in Europe, 2011 Technical Report of ICP Forests and FutMon. Work Report of the Institute for World Forestry 2011/1, ICP Forests, Hamburg, p. 97–113Google Scholar
  21. Nilsson J, Grennfelt P (1988) Critical loads for sulphur and nitrogen. Workshop in Skokloster, Sweden, 19–24 March 1988, Nordic Council of Ministers, Copenhagen, 418 pCrossRefGoogle Scholar
  22. Pihl Karlsson G, Akselsson C, Hellsten S, Karlsson PE (2011) Reduced European emissions of S and N – effects on air concentrations, deposition and soil water chemistry in Swedish forests. Environ Pollut 159:3571–3582CrossRefGoogle Scholar
  23. R Development Core Team (2009) R: a Language and Environment for Statistical Computing. Reference Index Version 2.10.1. R Foundation for Statistical Computing. Vienna, Austria. ISBN 3-900051-07-0Google Scholar
  24. Reis S, Grennfelt P, Klimont Z, Amann M, ApSimon H, Hettelingh J-P, Holland M, LeGall A-C, Maas R, Posch M, Spranger T, Sutton MA, Williams M (2012) From acid rain to climate change. Science 338:1153–1154CrossRefGoogle Scholar
  25. Richter AK, Hajdas I, Frossard E, Brunner I (2013) Soil acidity affects fine root turnover of European beech. Plant Biosyst 147:50–59CrossRefGoogle Scholar
  26. Spranger T, Smith R, Fowler D, Mills G, Posch M, Hall J, Schütze G, Hettelingh J-P, Slootweg J (2004) Modelling and mapping critical loads and levels and air pollution effects, risks and trends. International Co-operative Programme for Modelling and Mapping. Convention on Long-range Transboundary Air Pollution (LRTAP). UNECE, www.icpmapping.org, 236 p
  27. Stefan K, Fürst A, Hacker R, Bartels U (1997) Forest foliar condition in Europe - Results of large-scale foliar chemistry surveys (survey 1995 and data from previous years). EC - UNECE, Austrian Federal Forest Research Centre, Brussels, 207 p Google Scholar
  28. Sverdrup H, de Vries W (1994) Calculating critical loads for acidity with the simple mass balance method. Water Air Soil Pollut 72:143–162CrossRefGoogle Scholar
  29. Sverdrup H, Warfvinge P (1993) The effect of soil acidification on the growth of trees, grasses and herbs as expressed by the (Ca + Mg + K) / Al ratio. Reports in Ecology and Environmental Engineering 1993:2, Department of Chemical Engineering II, Lund University, SwedenGoogle Scholar
  30. Thimonier A, Graf Pannatier E, Schmitt M, Waldner P, Walthert L, Schleppi P, Dobbertin M, Kräuchi N (2010) Does exceeding the critical loads for nitrogen alter nitrate leaching, the nutrient status of trees and their crown condition at Swiss Long-term Forest Ecosystem Research (LWF) sites? Eur J For Res 129:443–461CrossRefGoogle Scholar
  31. Ulrich B, Mayer R, Khanna PK (1980) Chemical changes due to acid precipitation in a loess-derived soil in central Europe. Soil Sci 130:193–199CrossRefGoogle Scholar
  32. Waldner P, Schaub M, Graf Pannatier E, Schmitt M, Thimonier A, Walthert L (2007) Atmospheric deposition and ozone levels in Swiss forests: are critical values exceeded? Environ Monit Assess 128:5–17CrossRefGoogle Scholar
  33. Waldner P, Marchetto A, Thimonier A, Schmitt M, Rogora M, Granke O, Mues V, Hansen K, Pihl Karlsson G, Žlindra D, Clarke N, Verstraeten A, Lazdins A, Schimming C, Iacoban C, Lindroos A-J, Vanguelova E, Benham S, Meesenburg H, Nicolas M, Kowalska A, Apuhtin V, Napa U, Lachmanová Z, Kristoefel F, Bleeker A, Ingerslev M, Vesterdal L, Molina J, Fischer U, Seidling W, Jonard M, O’Dea P, Johnson J, Fischer R, Lorenz M (2014) Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atmos Environ 95:363–374CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Peter Waldner
    • 1
    Email author
  • Anne Thimonier
    • 1
  • Elisabeth Graf Pannatier
    • 1
  • Sophia Etzold
    • 1
  • Maria Schmitt
    • 1
  • Aldo Marchetto
    • 2
  • Pasi Rautio
    • 3
  • Kirsti Derome
    • 4
  • Tiina Maileena Nieminen
    • 5
  • Seppo Nevalainen
    • 6
  • Antti-Jussi Lindroos
    • 5
  • Päivi Merilä
    • 4
  • Georg Kindermann
    • 7
  • Markus Neumann
    • 7
  • Nathalie Cools
    • 8
  • Bruno de Vos
    • 8
  • Peter Roskams
    • 8
  • Arne Verstraeten
    • 8
  • Karin Hansen
    • 9
  • Gunilla Pihl Karlsson
    • 10
  • Hans-Peter Dietrich
    • 11
  • Stephan Raspe
    • 11
  • Richard Fischer
    • 12
  • Martin Lorenz
    • 12
  • Susanne Iost
    • 12
  • Oliver Granke
    • 13
  • Tanja G. M. Sanders
    • 14
  • Alexa Michel
    • 14
  • Hans-Dieter Nagel
    • 15
  • Thomas Scheuschner
    • 15
  • Primož Simončič
    • 16
  • Klaus von Wilpert
    • 17
  • Henning Meesenburg
    • 18
  • Stefan Fleck
    • 18
  • Sue Benham
    • 19
  • Elena Vanguelova
    • 19
  • Nicholas Clarke
    • 20
  • Morten Ingerslev
    • 21
  • Lars Vesterdal
    • 21
  • Per Gundersen
    • 21
  • Inge Stupak
    • 21
  • Mathieu Jonard
    • 22
  • Nenad Potočić
    • 23
  • Mayte Minaya
    • 24
  1. 1.WSL, Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
  2. 2.CNR-Istituto per lo Studio degli EcosistemiVerbania PallanzaItaly
  3. 3.Luke, Natural Resources Institute FinlandRovaniemiFinland
  4. 4.Luke, Natural Resources Institute FinlandOuluFinland
  5. 5.Luke, Natural Resources Institute FinlandVantaaFinland
  6. 6.Luke, Natural Resources Institute FinlandJoensuuFinland
  7. 7.BFW, Federal Research Centre for ForestsViennaAustria
  8. 8.INBO, Research Institute for Nature and ForestsBrusselsBelgium
  9. 9.IVL Swedish Environmental Research InstituteStockholmSweden
  10. 10.IVL Swedish Environmental Research InstituteGöteborgSweden
  11. 11.LWF, Bavarian State Institute of ForestryFreisingGermany
  12. 12.TI, Thünen-InstituteHamburgGermany
  13. 13.DigSyLand, Institute for digital System Analyses and Landscape DiagnosisHusbyGermany
  14. 14.TI, Thünen Institute of Forest EcosystemsEberswaldeGermany
  15. 15.OEKO-DATAStrausbergGermany
  16. 16.GIS, Slovenian Forestry InstituteLjubljanaSlovenia
  17. 17.FVA-BW, Forest Research Institute of Baden-WuertembergFreiburgGermany
  18. 18.NW-FVA, Northwest German Forest Research StationGöttingenGermany
  19. 19.Forest ResearchFarnhamUK
  20. 20.Norwegian Forest and Landscape InstituteÅsNorway
  21. 21.University of CopenhagenFrederiksberg CDenmark
  22. 22.UCL-ELI, Université Catholique de LouvainLouvain-la-NeuveBelgium
  23. 23.Croatian Forest Research InstituteJastrebarskoCroatia
  24. 24.CIFOR-INIA, Center for Forest InvestigationsMadridSpain

Personalised recommendations