Annals of Forest Science

, Volume 72, Issue 3, pp 311–320 | Cite as

Response of Swiss forests to management and climate change in the last 60 years

  • Meinrad Küchler
  • Helen Küchler
  • Angéline Bedolla
  • Thomas Wohlgemuth
Original Paper



Forest vegetation is forecasted to shift upslope several hundred metres by 2100 due to climate warming. However, only a small number of detailed assessments in selected regions have confirmed a climate response on the part of forest vegetation.

Aim s

This study aimed to analyse the relative contributions of temperature and other factors to range shifts in forest vegetation by comparing old and revisited relevés in Swiss forests.


In order to investigate such range shifts, we revisited 451 relevé plots in forests in all parts of Switzerland. Collected data comprise two independent samples, one dating from the 1950s (age 60 sample) on 126 plots and the other dating from the 1990s (age 15 sample) on 325 plots. We defined an indicator value for elevation to estimate the upslope and downslope range shifts of forest species. The influence of different site factors on range shifts was assessed by variance partitioning using Landolt’s (2010) averaged species indicator values. Vegetation changes were analysed by balancing both increasing and decreasing frequencies of plant species.


Our findings show significant differences between the two survey periods, where the averaged species indicator for elevation varied greatly in both the age-60 and the age-15 samples. In addition, a significant upslope shift in the herbaceous forest layer (herbs and tree regeneration) of about 10 m per decade since the mid-twentieth century is evident. Downslope shifts were detected in the shrub/tree layer at lower elevations, which may be explained by factors other than climate warming.


To date, the impact of global warming on tree species composition in Swiss forests has been weaker in comparison to the effects arising from forest management and land use change. Understorey vegetation, however, shows a strong signal of upslope shift that may be explained most adequately by a combination of climate change and other factors.


Elevational shifts Forest vegetation Global warming Indicator values Species distribution Variance partitioning 



We are grateful to Silvia Dingwall and Curtis Gautschi for revising the English text. We also thank the editors and two anonymous reviewers for their constructive comments.


Funding for this study was provided by the Swiss National Forest Inventory and by the “Forests and Climate Change” research programme, a joint initiative of the Federal Office for the Environment, Bern, and of the Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf.


  1. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688. doi: 10.1111/j.1365-2699.2006.01584.x CrossRefGoogle Scholar
  2. Bertrand R, Lenoir J, Piedallu C, Riofrio-Dillon G, de Ruffray P, Vidal C, Pierrat J-C, Gégout J-C (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–520. doi: 10.1038/nature10548 CrossRefPubMedGoogle Scholar
  3. Bolliger J, Kienast F, Zimmermann NE (2000) Risks of global warming on montane and subalpine forests in Switzerland—a modeling study. Reg Envir Change 1:99–111. doi: 10.1007/s101130000018 CrossRefGoogle Scholar
  4. Brändli U-B (2010) Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006, Birmensdorf, Eidg Forschungsanst Wald Schnee Landschaft WSL. Bern, Bundesamt für Umwelt, BAFUGoogle Scholar
  5. Braun-Blanquet J (1964) Pflanzensoziologie. Springer, WienCrossRefGoogle Scholar
  6. Brzeziecki B, Kienast F, Wildi O (1993) A simulated map of the potential natural forest vegetation of Switzerland. J Veg Sci 4:499–508CrossRefGoogle Scholar
  7. Brzeziecki B, Kienast F, Wildi O (1995) Modelling potential impacts of climate change on the spatial distribution of zonal forest communities in Switzerland. J Veg Sci 6:257–268CrossRefGoogle Scholar
  8. Bürgi M, Schuler A (2003) Driving forces of forest management—an analysis of regeneration practices in the forests of the Swiss Central Plateau during the 19th and 20th century. For Ecol Manag 176:173–183CrossRefGoogle Scholar
  9. Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 4:493–506. doi: 10.1078/1439-1791-00185 CrossRefGoogle Scholar
  10. Dormann CF (2007) Promising the future? Global change projections of species distributions. Basic Appl Ecol 8:387–397. doi: 10.1016/j.baae.2006.11.001
  11. Dzwonko Z (2001) Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values. J Appl Ecol 38:942–951. doi: 10.1046/j.1365-2664.2001.00649.x CrossRefGoogle Scholar
  12. Ellenberg H (1974) Indicator values of vascular plants in central Europe. Scripta Geobotanica 9:1–97Google Scholar
  13. Ellenberg H, Klötzli F (1972) Waldgesellschaften und Waldstandorte der Schweiz. Mitt Schweiz Anst Forstl Versuchsw 48:388–930Google Scholar
  14. Gimmi U, Wohlgemuth T, Rigling A, Hoffmann CW, Buergi M (2010) Land-use and climate change effects in forest compositional trajectories in a dry Central-Alpine valley. Ann For Sci 67. doi: 701  10.1051/forest/2010026
  15. Gobet E, Vescovi E, Tinner W (2010) A paleoecological contribution to assess the natural vegetation of Switzerland. Bot Helv 120:105–115. doi: 10.1007/s00035-010-0080-2 CrossRefGoogle Scholar
  16. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. doi: 10.1016/s0304-3800(00)00354-9 CrossRefGoogle Scholar
  17. Güsewell S, Peter M, Birrer S (2012) Altitude modifies species richness—nutrient indicator value relationships in a country-wide survey of grassland vegetation. Ecol Indic 20:134–142. doi: 10.1016/j.ecolind.2012.02.011 CrossRefGoogle Scholar
  18. Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nature Clim Change 3:203–207. doi: 10.1038/nclimate1687 CrossRefGoogle Scholar
  19. Hernández L, Cañellas I, Alberdi I, Torres I, Montes F (2013) Assessing changes in species distribution from sequential large-scale forest inventories. Ann For Sci 71:161–171. doi: 10.1007/s13595-013-0308-6 CrossRefGoogle Scholar
  20. Küchler M (2014) Software VEGEDAZ. Programm für die Erfassung und Auswertung von Vegetationsdaten. Update 2014. Forschungseinheit Biodiversität und Naturschutzbiologie, Eidg. Forschungsanstalt WSL, BirmensdorfGoogle Scholar
  21. Landolt E (1977) Ökologische Zeigerwerte zur Schweizer Flora. Veröff Geobot Inst ETH, Stift Rübel Zürich 64:1–208Google Scholar
  22. Landolt E, Bäumler B, Erhardt A, Hegg O, Klötzli F, Lämmler W, Nobis M, Rudmann-Maurer K, Schweingruber FH, Theurillat J-P, Urmi E, Vust M, Wohlgemuth T (2010) Flora indicativa - Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Haupt, VerlagGoogle Scholar
  23. Lenoir J, Svenning J-C (2013) Latitudinal and elevational range shifts under contemporary climate change. Encyclopedia of biodiversity (2nd ed) 4:599–611Google Scholar
  24. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771. doi: 10.1126/science.1156831 CrossRefPubMedGoogle Scholar
  25. Lenoir J, Gegout J-C, Guisan A, Vittoz P, Wohlgemuth T, Zimmermann NE, Dullinger S, Pauli H, Willner W, Svenning J-C (2010) Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33:295–303. doi: 10.1111/j.1600-0587.2010.06279.x Google Scholar
  26. Perroud M, Bader S (2013) Klimaänderung in der Schweiz. Indikatoren zu Ursachen, Auswirkungen, Massnahmen. In: Bern BfU (ed) Umwelt-Zustand, pp. 86Google Scholar
  27. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  28. Randin CF, Paulsen J, Vitasse Y, Kollas C, Wohlgemuth T, Zimmermann NE, Körner C (2013) Do the elevational limits of deciduous tree species match their thermal latitudinal limits? Glob Ecol Biogeogr 22:913–923. doi: 10.1111/geb.12040 CrossRefGoogle Scholar
  29. Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244. doi: 10.2307/3236802 CrossRefGoogle Scholar
  30. Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European alps: a review. Clim Change 50:77–109. doi: 10.1023/a:1010632015572 CrossRefGoogle Scholar
  31. Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250. doi: 10.1111/j.1365-2486.2005.01018.x CrossRefGoogle Scholar
  32. von Arx G, Dobbertin M, Rebetez M (2012) Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agric For Meteorol 166:144–155. doi: 10.1016/j.agrformet.2012.07.018 CrossRefGoogle Scholar
  33. von Humboldt A, Bonpland A (1807) Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer, F.G. Cotta, Tübingen; F. Schoell, ParisGoogle Scholar
  34. Walther G-R (2010) Community and ecosystem responses to recent climate change. Philos T Roy Soc B 365:2019–2024. doi: 10.1098/rstb.2010.0021 CrossRefGoogle Scholar
  35. Walther G-R, Grundmann A (2001) Trends of vegetation change in colline and submontane climax forests in Switzerland. Bull Geobot Inst ETH Zürich 67:3–12Google Scholar
  36. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  37. Wohlgemuth T (2012) Swiss forest vegetation database. In: Dengler J, Oldeland J, Jansen F, Chytrý M, Ewald J, Finckh M, Glöckler F, Lopez-Gonzalez G, Peet RK, Schaminée JHJ (eds) Vegetation databases for the 21st century, pp. 340–340Google Scholar
  38. Wohlgemuth T, Moser B, Braendli UB, Kull P, Schuetz M (2008) Diversity of forest plant species at the community and landscape scales in Switzerland. Plant Biosyst 142:604–613. doi: Pii 905684960  10.1080/11263500802410975
  39. Zimmermann NE, Kienast F (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. J Veg Sci 10:469–482CrossRefGoogle Scholar
  40. Zimmermann NE, Bolliger J, Gehrig-Fasel J, Guisan A, Kienast F, Lischke H, Rickebusch S, Wohlgemuth T (2006) Wo wachsen die Bäume in 100 Jahren? Wald und Klimawandel Forum Wissen 2006:63–71Google Scholar
  41. Zimmermann NE, Edwards TC, Graham CH, Pearman PB, Svenning J-C (2010) New trends in species distribution modelling. Ecography 33:985–989. doi: 10.1111/j.1600-0587.2010.06953.x CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Meinrad Küchler
    • 1
  • Helen Küchler
    • 1
  • Angéline Bedolla
    • 1
  • Thomas Wohlgemuth
    • 1
  1. 1.WSL Swiss Federal Research InstituteBirmensdorfSwitzerland

Personalised recommendations