Annals of Forest Science

, Volume 71, Issue 7, pp 761–770 | Cite as

Stem taper function for sweet chestnut (Castanea sativa Mill.) coppice stands in northwest Spain

  • María Menéndez-MiguélezEmail author
  • Elena Canga
  • Pedro Álvarez-Álvarez
  • Juan Majada
Original Paper


• Context

Despite the economic importance of Castanea sativa Mill. in northwest Spain, studies of its growth and yield are practically non-existent.

• Aims

A compatible system formed by a taper function, a total volume equation, and a merchantable volume equation was developed for chestnut (C. sativa Mill.) coppice stands in northwest Spain.

• Methods

Data from 203 destructively sampled trees were used for the adjustment. Outliers were removed with a non-parametric local adjustment, providing a final data set of measurements taken from 3,188 sections which was used to test five taper models (compatible and non-compatible). A second-order continuous autoregressive error structure was used to model the error term and account for autocorrelation. Presence of multicollinearity was evaluated with the condition number. Comparison of the models was carried out using overall goodness-of-fit statistics and graphical analysis.

• Results

Results show that the models developed by Fang et al. in For Sci 46: 1–12, 2000 and Kozak in For Chron 80, N 4: 507–515, 2004 were superior to other equations in predicting diameter for chestnut coppice stands.

• Conclusion

The compatible volume system developed by Fang et al. in For Sci 46: 1–12, 2000 was finally selected as it provided the best compromise between describing stem profile and also estimating merchantable height, merchantable volume, and total volume and therefore provides the first specific tool for more effective management of chestnut coppice stands.


Chestnut coppice Volume system Segmented model Compatible equations 



The authors thank Forest Services (Government of the Principality of Asturias) and the private owners who allowed the establishment of the permanent plots necessary for the development of the study. The authors are grateful to the University of Oviedo, which provided the validation data.


This study was supported by the Spanish Ministry of Science and Innovation (MICIN) and the Plan for Science, Technology and Innovation of the Principality of Asturias (PCTI) as part of the research project “Forest and industrial evaluation of Spanish chestnut” (VALOCAS).


  1. Álvarez P, Barrio M, Castedo F, Díaz R, Fernández JL, Mansilla P, Pérez R, Pintos C, Riesgo G, Rodríguez R, Salinero MC (2000) Manual de selvicultura del castaño en Galicia. University of Santiago Press, Santiago, EspañaGoogle Scholar
  2. Barrio-Anta M, Diéguez-Aranda U, Castedo-Dorado F, Álvarez-González JG, Von Gadow K (2007) Merchantable volume system for pedunculate oak in northwestern Spain. Ann For Sci 64:511–520. doi: 10.1051/forest:2007028 CrossRefGoogle Scholar
  3. Belsey DA (1991) Conditioning diagnostics, collinearity and weak data in regression. Wiley, New YorkGoogle Scholar
  4. Bi H (2000) Trigonometric variable-form taper equations for Australian eucalypts. For Sci 46:397–409Google Scholar
  5. Brink C, Gadow KV (1986) On the use of growth and decay functions for modeling stem profiles. EDV in Medizin u Biologie 17:20–27. doi: 10.1080/02827580410019562 Google Scholar
  6. Burkhart H (1977) Cubic-foot volume of loblolly pine to any merchantable top limit. Sout J Appl For 1:7–9Google Scholar
  7. Clutter JL (1980) Development of taper functions from variable-top merchantable volume equations. For Sci 26:117–120Google Scholar
  8. Conedera M, Manetti MC, Giudici F, Amorini E (2004) Distribution and economic potential of the sweet chestnut (Castanea sativa Mill.) in Europe. Ecologia Mediterranea 30:179–193Google Scholar
  9. Crecente-Campo F, Rojo A, Diéguez-Aranda U (2009) A merchantable volume system for Pinus sylvestris L. in the major mountain ranges of Spain. Ann For Sci 66:808. doi: 10.1051/forest/2009078 CrossRefGoogle Scholar
  10. Demaerschalk J (1972) Converting volume equations to compatible taper equations. For Sci 18:241–245Google Scholar
  11. DGCONA (2013). III Mapa Forestal de España. MFE50. 1:50000. Ministerio de Medio Ambiente, Madrid, EspañaGoogle Scholar
  12. Díaz Varela RA, Calvo Iglesias MS, Díaz Varela ER, Ramil Rego P, Crecente Maseda R (2009) Castanea sativa forests: a threatened cultural landscape in Galicia NW Spain. In: O’Connell M, Küster H (eds) Cultural Landscapes of Europe. Fields of Demeter Haunts of Pan (Krzywinski K. Aschembeck Media UG, Bremen, pp 94–95Google Scholar
  13. Diéguez-Aranda U, Castedo-Dorado F, Álvarez-González JG, Rojo A (2006) Compatible taper function for Scots pine plantations in northwestern Spain. Can J For Res-Rev Can Rech For 36:1190–1205. doi: 10.1139/X06-008 CrossRefGoogle Scholar
  14. Diéguez-Aranda U, Rojo Alboreca A, Castedo-Dorado F, Álvarez-González JG, Barrio-Anta M, Crecente-Campo F, González-González JM, Pérez-Cruzado C, Rodríguez-Soalleiro R, López-Sánchez CA, Balboa-Murias MA, Gorgoso Varela JJ, Sánchez Rodríguez F (2009). Consellería do Medio Rural, Xunta de Galicia. 268 pp + CD-Rom.Google Scholar
  15. Fang Z, Bailey RL (1999) Compatible volume and taper models with coefficients for tropical species on Hainan Island in Southern China. For Sci 45:85–100Google Scholar
  16. Fang Z, Borders BE, Bailey RL (2000) Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. For Sci 46:1–12Google Scholar
  17. Gallardo JF, Rico M, González MI (2000) Some ecological aspects of a chestnut coppice located at the Sierra de Gata mountains (Western Spain) and its relationships with a sustainable management. Ecologia Mediterranea 26:53–69Google Scholar
  18. Giudici F, Amorini E, Manetti MC, Chatziphilippidis G, Pividori M, Sevrin E, Zingg A (2000) Sustainable management of sweet chestnut (Castanea sativa Mill.) coppice forest by means of the production of quality timber. Ecologia Mediterranea 26:8–26Google Scholar
  19. Goulding CJ, Murray J (1976) Polynomial taper equations that are compatible with three volume equations. N Z J For Sci 5:313–322Google Scholar
  20. Huang S, Yang Y, Wang Y (2003) A critical look at procedures for validating growth and yield models. In: Amaro A, Reed D, Soares P (eds) Modelling forest systems. CAB International, Wallingford, Oxfordshire, UKGoogle Scholar
  21. Kerr G, Evans J (1993). Growing broadleaves for timber. Forestry Commission Handbook 9, London.Google Scholar
  22. Kozak A (1988) A variable-exponent taper equation. Can J For Res-Rev Can Rech For 18:1363–1368. doi: 10.1139/X88-213 CrossRefGoogle Scholar
  23. Kozak A (2004) My last words on taper equations. For Chron 80:507–515. doi: 10.5558/tfc80507-4 CrossRefGoogle Scholar
  24. Kozak A, Kozak R (2003) Does cross validation provide additional information in the evaluation of regression models? Can J For Res 33:976–987. doi: 10.1139/X03-022 CrossRefGoogle Scholar
  25. Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687. doi: 10.2307/2532087 PubMedCrossRefGoogle Scholar
  26. MARM (2011) Avance del Anuario de Estadística Forestal. Área de Medio Ambiente, Madrid, EspañaGoogle Scholar
  27. Muhairwe CK (1994) Tree form and taper variation over time for interior lodgepole pine. Can J For Res 24:1904–1913. doi: 10.1139/X94-245 CrossRefGoogle Scholar
  28. Myers RH (1990) Classical and modern regression with applications, 2nd edn. Duxbury Press, Belmont, CAGoogle Scholar
  29. Pompa-García M, Corral-Rivas JJ, Hernández-Díaz JC, Álvarez-González JG (2009) A system for calculating the merchantable volume of oak trees in the northwest of the state of Chihuahua, Mexico. J For Res 20:293–300. doi: 10.1007/s11676-009-0051-x CrossRefGoogle Scholar
  30. Reed DD, Green E (1984) Compatible stem taper and volume ratio equations. For Sci 30:977–990Google Scholar
  31. Riemer T, Gadow KV, Sloboda B (1995) Eim modell zur Beschreibung von Baumschäften. Allg Forst Jagdztg 166:144–147Google Scholar
  32. Rodríguez F, Broto M, Lizarralde I (2008). CubiFOR: herramienta para cubicar, clasificar productos, calcular biomasa y CO2 en masas forestales de Castilla y León. Revista Montes: 33–3Google Scholar
  33. SAS Institute Inc (2004a) SAS/STAT®, 0.1. User’s Guide. SAS Institute Inc., Cary, NCGoogle Scholar
  34. SAS SAS Institute Inc (2004b) SAS/ETS®, 0.1. User's Guide. SAS Institute Inc., Cary, NCGoogle Scholar
  35. Thomas CE, Parresol BR (1991) Simple, flexible, trigonometric taper equations. Can J For Res 21:1132–1137. doi: 10.1139/X91-157 CrossRefGoogle Scholar
  36. Weisberg S (1985) Applied linear regression, 2nd edn. Wiley, IncGoogle Scholar
  37. Zhang D (1997) Cross-validation of non-linear growth functions for modeling tree height-diameter relationships. Ann Bot 79:251–257. doi: 10.1006/anbo.1996.0334 CrossRefGoogle Scholar
  38. Zimmerman DL, Núñez-Antón V (2001) Parametric modeling of growth curve data: an overview (with discussion). Test 10:1–73. doi: 10.1007/BF02595823 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • María Menéndez-Miguélez
    • 1
    Email author
  • Elena Canga
    • 1
  • Pedro Álvarez-Álvarez
    • 2
  • Juan Majada
    • 1
  1. 1.Forest and Wood Technology Research Centre (CETEMAS)Grado, AsturiasSpain
  2. 2.Research Group in Atlantic Forests (GIS-Forest), Department of Organisms and Systems Biology, Escuela Politécnica de Mieres (EPM)University of OviedoMieresSpain

Personalised recommendations