Annals of Forest Science

, Volume 71, Issue 4, pp 453–462 | Cite as

Assessing tree dendrometrics in young regenerating plantations using terrestrial laser scanning

  • Ying Li
  • Carsten Hess
  • Henrik von Wehrden
  • Werner Härdtle
  • Goddert von Oheimb
Original Paper



Terrestrial laser scanning (TLS) provides a valuable tool for the retrieval of detailed individual-tree structural parameters, but has never previously been applied to young stands under field conditions.


The aim was to explore the performance of TLS in a young tree plantation located in a heterogeneous environment in subtropical China.


We investigated 438 young trees for congruence between direct field and TLS measurements of total tree height, stem diameter at ground height, and length and height of the longest branch using correlation tests. We applied generalized linear models to examine whether congruence was affected by the observed structural parameter or extrinsic factors (e.g., potential occlusion, point cloud quality).


TLS made it possible to detect trees higher than 40 cm. The TLS-retrieved data were highly congruent with the data obtained from direct measurements. The poor descriptions of stems and branches of some individuals of small-sized and leaf-on tree species were due to occlusion by ground vegetation and leaf-on branches. Observed structural parameter and extrinsic factors did not explain the variance between the two approaches.


TLS proved to be a promising tool for high-resolution, non-destructive analyses of tree dendrometrics in young regenerating plantations.


BEF-China Regeneration phase Subtropical China Point cloud TLS 



This research was carried out as part of the BEF-China project financed by the German Research Foundation (DFG FOR 891/2). We are grateful to all members of BEF-China for their support and to Lars Goldbach for his valuable assistance in the scanning campaign. We thank the two anonymous reviewers for comments that considerably improved the earlier version of the manuscript.


  1. Brisson J (2001) Neighborhood competition and crown asymmetry in Acer saccharum. Can J For Res 31:2151–2159CrossRefGoogle Scholar
  2. Bruelheide H, Böhnke M, Both S, Fang T, Assmann T, Baruffol M, Bauhus J, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Fischer M, Geißler C, Guo DL, Guo LD, Härdtle W, He JS, Hector A, Kröber W, Kühn P, Lang AC, Nadrowski K, Pei KQ, Scherer-Lorenzen M, Shi XZ, Scholten T, Schuldt A, Trogisch S, von Oheimb G, Welk E, Wirth C, Wu YT, Yang XF, Zeng XQ, Zhang SR, Zhou HZ, Ma KP, Schmid B (2011) Community assembly during secondary forest succession in a Chinese subtropical forest. Ecol Monogr 81:25–41CrossRefGoogle Scholar
  3. Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Gutknecht J, Guo D, Guo LD, Härdtle W, He JS, Klein A, Kühn P, Liang Y, Liu X, Michalski S, Niklaus P, Pei K, Scherer-Lorenzen M, Scholten T, Schuldt A, Seidler G, von Oheimb G, Welk E, Wirth C, Wubet T, Yang XF, Yu MJ, Zhang SR, Zhou HZ, Fischer M, Ma KP, Schmid B (2014) Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol Evol. doi:  10.1111/2041-210X.12126
  4. Bucksch A, Lindenbergh R, Menenti M (2010) SkelTre—robust skeleton extraction from imperfect point clouds. Vis Comput 26:1283–1300CrossRefGoogle Scholar
  5. Côté JF, Fournier RA, Egli R (2011) An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR. Environ Model Software 26:761–777CrossRefGoogle Scholar
  6. Côté JF, Fournier RA, Frazer GW, Niemann KO (2012) A fine-scale architectural model of trees to enhance LiDAR-derived measurements of forest canopy structure. Agric For Meteorol 166–167:72–85CrossRefGoogle Scholar
  7. Dassot M, Constant T, Fournier M (2011) The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges. Ann For Sci 68:959–974CrossRefGoogle Scholar
  8. Dassot M, Colin A, Santenoise P, Fournier M, Constant T (2012) Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Comput Electron Agric 89:86–93CrossRefGoogle Scholar
  9. Eysn L, Pfeifer N, Ressl C, Hollaus M, Grafl A, Morsdorf F (2013) A practical approach for extracting tree models in forest environments based on equirectangular projections of terrestrial laser scans. Remote Sens 5:5424–5448CrossRefGoogle Scholar
  10. Fleck S, Mölder I, Jacob M, Gebauer T, Jungkunst HF, Leuschner C (2011) Comparison of conventional eight-point crown projections with LiDAR-based virtual crown projections in a temperate old-growth forest. Ann For Sci 68:1173–1185CrossRefGoogle Scholar
  11. Geißler G, Lang AC, von Oheimb G, Härdtle W, Baruffol M, Scholten T (2012) Impact of tree saplings on the kinetic energy of rainfall—the importance of stand density, species identity and tree architecture in subtropical forests in China. Agric For Meteorol 156:31–40CrossRefGoogle Scholar
  12. Grams TEE, Anderson CP (2007) Competition for resources in trees: physiological versus morphological plasticity. Progr Bot 68:356–381CrossRefGoogle Scholar
  13. Henning JG, Radtke PJ (2006) Detailed stem measurements of standing trees from ground-based scanning LiDAR. For Sci 52:67–80Google Scholar
  14. Hilker T, van Leeuwen M, Coops NC, Wulder MA, Newnham GJ, Jupp DLB, Culvenor DS (2010) Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand. Trees-Struct Funct 24:819–832CrossRefGoogle Scholar
  15. Hopkinson C, Chasmer L, Young-Pow C, Treitz P (2004) Assessing forest metrics with a ground-based scanning lidar. Can J For Res 34:573–583CrossRefGoogle Scholar
  16. Jung SE, Kwak DA, Park T, Lee WK, Yoo SJ (2011) Estimating crown variables of individual trees using airborne and terrestrial laser scanners. Remote Sens 3:2346–2363CrossRefGoogle Scholar
  17. Kobe RK (2006) Sapling growth as a function of light and landscape-level variation in soil water and foliar nitrogen in northern Michigan. Oecologia 147:119–133PubMedCrossRefGoogle Scholar
  18. Lang AC, Härdtle W, Baruffol M, Böhnke M, Bruelheide H, Schmid B, von Wehrden H, von Oheimb G (2012) Mechanisms promoting tree species coexistence: experimental evidence with saplings of subtropical forest ecosystems of China. J Veg Sci 23:837–846CrossRefGoogle Scholar
  19. Lichti DD, Gordon SJ, Stewart MP (2002) Ground-based laser scanners: operation, systems and applications. Geophys J Roy Astron Soc 56:21–33Google Scholar
  20. Maas HG, Bienert A, Scheller S, Keane E (2008) Automatic forest inventory parameter determination from terrestrial laser scanner data. Int J Remote Sens 29:1579–1593CrossRefGoogle Scholar
  21. Metz J, Seidel D, Schall P, Scheffer D, Schulze ED, Ammer C (2013) Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth. For Ecol Manage 310:275–288CrossRefGoogle Scholar
  22. Pretzsch H (2009) Forest dynamics, growth and yield: from measurement to model. Springer, BerlinGoogle Scholar
  23. Pretzsch H, Seifert S, Huang P (2011) Beitrag des terrestrischen Laserscannings zur Erfassung der Struktur von Baumkronen. Schweiz Z Forstwes 162:186–194CrossRefGoogle Scholar
  24. Pueschel P, Newnham G, Rock G, Udelhoven T, Werner W, Hill J (2013) The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans. ISPRS J Photogramm Remote Sens 77:44–56CrossRefGoogle Scholar
  25. Schilling A, Schmidt A, Maas HG (2012) Tree topology representation from TLS point clouds using depth-first search in voxel space. Photogramm Eng Remote Sens 78:383–392CrossRefGoogle Scholar
  26. Seidel D, Beyer F, Hertel D, Fleck S, Leuschner C (2011a) 3D-laser scanning: a non-destructive method for studying above-ground biomass and growth of juvenile trees. Agric For Meteorol 151:1305–1311CrossRefGoogle Scholar
  27. Seidel D, Fleck S, Leuschner C, Hammett T (2011b) Review of ground-based methods to measure the distribution of biomass in forest canopies. Ann For Sci 68:225–244CrossRefGoogle Scholar
  28. Seidel D, Leuschner C, Müller A, Krause B (2011c) Crown plasticity in mixed forests—quantifying asymmetry as a measure of competition using terrestrial laser scanning. For Ecol Manage 261:2123–2132CrossRefGoogle Scholar
  29. Stoll P, Schmid B (1998) Plant foraging and dynamic competition between branches of Pinus sylvestris in contrasting light environments. J Ecol 86:934–945CrossRefGoogle Scholar
  30. Sumida A, Terazawa I, Togashi A, Komiyama A (2002) Spatial arrangement of branches in relation to slope and neighborhood competition. Ann Bot 89:301–310PubMedCrossRefGoogle Scholar
  31. Thies M, Spieker H (2004) Evaluation and future prospects of terrestrial laser scanning for standardized forest inventories. Int Arch Photogram Rem Sens Spatial Inform Sci 36:192–197Google Scholar
  32. Van der Zande D, Hoet W, Jonckheere I, van Aardt J, Coppin P (2006) Influence of measurement set-up of ground-based LiDAR for derivation of tree structure. Agric For Meteorol 141:147–160CrossRefGoogle Scholar
  33. Van Leeuwen M, Nieuwenhuis M (2010) Retrieval of forest structural parameters using LiDAR remote sensing. Eur J For Res 129:749–770CrossRefGoogle Scholar
  34. Vehmas M, Packalén P, Maltamo M, Eerikäinen K (2011) Using airborne laser scanning data for detecting canopy gaps and their understory type in mature boreal forest. Ann For Sci 68:825–835CrossRefGoogle Scholar
  35. Watt PJ, Donoghue DNM (2005) Measuring forest structure with terrestrial laser scanning. Int J Remote Sens 26:1437–1446CrossRefGoogle Scholar
  36. Watt PJ, Donoghue DNM, Dunford RW (2003) Forest parameter extraction using terrestrial laser scanning. Proc. ScandLaser Scientific Workshop on Airborne Laser Scanning of Forests, Umeå, Sweden, 237–244Google Scholar
  37. Weiß J (2009) Application and statistical analysis of terrestrial laser scanning and forest growth simulations to determine selected characteristics of Douglas-Fir stands. Folia For Pol, Ser A 51:123–137CrossRefGoogle Scholar
  38. Wezyk P, Koziol K, Glista M, Pierzchalski M (2007) Terrestrial laser scanning versus traditional forest inventory: First results from the Polish forests. In: Proc. Laser Scanning 2007 and Silvilaser 2007. ISPRS Commission III Workshop, Vol. 36, Part 3, Espoo, Finland, Sept. 12–14, 2007Google Scholar
  39. Yang XF, Bauhus J, Both S, Fang T, Härdtle W, Kröber W, Ma KP, Nadrowski K, Pei KQ, Scherer-Lorenzen M, Scholten T, Seidler G, Schmid B, von Oheimb G, Bruelheide H (2013) Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). Eur J For Res 132:593–606CrossRefGoogle Scholar
  40. Zimble DA, Evans DL, Carlson GC, Parker RC, Grado SC, Gerard PD (2003) Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sens Environ 87:171–182CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Ying Li
    • 1
  • Carsten Hess
    • 1
  • Henrik von Wehrden
    • 1
    • 2
    • 3
  • Werner Härdtle
    • 1
  • Goddert von Oheimb
    • 1
  1. 1.Faculty Sustainability, Institute of EcologyLeuphana University LüneburgLüneburgGermany
  2. 2.Center for MethodsLeuphana University LüneburgLüneburgGermany
  3. 3.Research Institute of Wildlife EcologyViennaAustria

Personalised recommendations