Annals of Forest Science

, Volume 71, Issue 1, pp 71–80

Xylogenesis of Pinus pinaster under a Mediterranean climate

  • Joana Vieira
  • Sergio Rossi
  • Filipe Campelo
  • Helena Freitas
  • Cristina Nabais
Original Paper

Abstract

Context

The knowledge on cambial activity in water-limited environments, such as the Mediterranean, is still fragmentary. Dendrochronological studies have determined that spring precipitation plays an important part in determining tree-ring width and the properties of tracheids. However, the complex relation between cambial phenology and climate is still far from understood.

Aims

We studied the influence of climate, especially water stress, on maritime pine wood formation with the aim of determining the influence of drought on cambial activity.

Methods

A plantation of maritime pine (Pinus pinaster) was selected in the west coast of Portugal, to monitor cambial activity and wood formation using anatomical observations and band dendrometers. The trees were monitored weekly over 2 years (2010 and 2011).

Results

Xylem differentiation started earlier when warmer late winter temperatures were observed. Water stress triggered an earlier stop of wood formation and also the formation of tracheids with smaller lumen area. In both years a bimodal pattern of stem radial increment was registered by band dendrometers with two periods of increment: one in spring and another in autumn. The xylem anatomy study suggests that the autumnal increment period corresponded mostly to stem rehydration, since the differentiation of new xylem cells by the cambium was not observed.

Conclusion

Maritime pine cambial activity appears to be under a double climatic control: temperature influences cambial onset and water availability growth cessation.

Keywords

Wood formation Drought Mediterranean Maritime pine Dendrometers 

References

  1. Abe H, Nakai T, Utsumi Y, Kagawa A (2003) Temporal water deficit and wood formation in Cryptomeria japonica. Tree Physiol 23:859–863PubMedCrossRefGoogle Scholar
  2. Adams HD, Germino MJ, Breshears DD, Barron-Gafford GA, Guardiola-Claramonte M, Zou CB, Huxman TE (2013) Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytol 197:1142–1151. doi:10.1111/nph.12102 PubMedCrossRefGoogle Scholar
  3. Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci U S A 106:7063–7066. doi:10.1073/pnas.0901438106 PubMedCrossRefGoogle Scholar
  4. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi:10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  5. Begum S, Nakaba S, Bayramzadeh V, Oribe Y, Kubo T, Funada R (2008) Temperature responses of cambial reactivation and xylem differentiation in hybrid poplar (Populus sieboldii × P-grandidentata) under natural conditions. Tree Physiol 28:1813–1819PubMedCrossRefGoogle Scholar
  6. Begum S, Nakaba S, Oribe Y, Kubo T, Funada R (2007) Induction of cambial reactivation by localized heating in a deciduous hardwood hybrid poplar (Populus sieboldii × P. randidentata). Ann Bot 100:439–447. doi:10.1093/Aob/Mcm130 PubMedCrossRefGoogle Scholar
  7. Belien E, Rossi S, Morin H, Deslauriers A (2012) Xylogenesis in black spruce subjected to rain exclusion in the field. Can J For Res-Revue Canadienne De Recherche Forestiere 42:1306–1315. doi:10.1139/x2012-095 CrossRefGoogle Scholar
  8. Bogino SM, Bravo F (2008) Growth response of Pinus pinaster Ait. to climatic variables in central Spanish forests. Ann For Sci 65:506. doi:10.1051/forest:2008025 CrossRefGoogle Scholar
  9. Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480. doi:10.1111/j.1469-8137.2009.03073.x PubMedCrossRefGoogle Scholar
  10. Campelo F, Vieira J, Nabais C (2013) Tree-ring growth and intra-annual density fluctuations of Pinus pinaster responses to climate: does size matter? Trees - Struct Funct 27:763–772. doi:10.1007/s00468-012-0831-3 CrossRefGoogle Scholar
  11. Carrer M, Urbinati C (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol 170:861–871PubMedCrossRefGoogle Scholar
  12. Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916. doi:10.1093/aob/mcf105 PubMedCrossRefGoogle Scholar
  13. Cherubini P, Gartner BL, Tognetti R, Braker OU, Schoch W, Innes JL (2003) Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol Rev 78:119–148PubMedCrossRefGoogle Scholar
  14. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755. doi:10.1038/nature11688 PubMedGoogle Scholar
  15. CRU, Netherlands Royal Meteorological Institute, 2011. CRU TS 3.1. http://climexp.knmi.nl/
  16. Dalla-Salda G, Martinez-Meier A, Cochard H, Rozenberg P (2009) Variation of wood density and hydraulic properties of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) clones related to a heat and drought wave in France. For Ecol Manag 257:182–189. doi:10.1016/j.foreco.2008.08.019 CrossRefGoogle Scholar
  17. de Luis M, Gricar J, Cufar K, Raventos J (2007) Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. Iawa J 28:389–404Google Scholar
  18. de Luis M, Novak K, Cufar K, Raventos J (2009) Size mediated climate-growth relationships in Pinus halepensis and Pinus pinea. Trees - Struct Funct 23:1065–1073. doi:10.1007/s00468-009-0349-5 CrossRefGoogle Scholar
  19. Denne MP (1989) Definition of latewood according to Mork (1928). Iawa Bull 10:59–62Google Scholar
  20. Deslauriers A, Morin H (2005) Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees-Struct Funct 19:402–408CrossRefGoogle Scholar
  21. Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008) Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol 28:863–871PubMedCrossRefGoogle Scholar
  22. Domec JC, Gartner BL (2002) How do water transport and water storage differ in coniferous earlywood and latewood? J Exp Bot 53:2369–2379. doi:10.1093/jxb/erf100 PubMedCrossRefGoogle Scholar
  23. Eilmann B, Zweifel R, Buchmann N, Pannatier EG, Rigling A (2011) Drought alters timing, quantity, and quality of wood formation in Scots pine. J Exp Bot 62:2763–2771. doi:10.1093/jxb/erq443 PubMedCrossRefGoogle Scholar
  24. Ferreira O, Torrinha AM, Cardoso PM (2010) Plano de gestão florestal: Mata Nacional do Urso e Mata Nacional do PedrogãoGoogle Scholar
  25. Fritts HC (1976) Tree rings and climate. Academic, LondonGoogle Scholar
  26. Gricar J, Cufar K, Oven P, Schmitt U (2005) Differentiation of terminal latewood tracheids in silver fir during autumn. Ann Bot 95:959–965. doi:10.1093/aob/mci112 PubMedCrossRefGoogle Scholar
  27. Gricar J, Krze L, Cufar K (2009) Number of cells in xylem, phloem and dormant cambium in silver fir (Abies alba), in trees of different vitality. Iawa J 30:121–133CrossRefGoogle Scholar
  28. Gricar J, Zupancic M, Cufar K, Koch G, Schmitt U, Oven P (2006) Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Ann Bot 97:943–951. doi:10.1093/aob/mc1050 PubMedCrossRefGoogle Scholar
  29. Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115. doi:10.1078/1433-8319-00017 CrossRefGoogle Scholar
  30. Hsiao TC, Acevedo E, Fereres E, Henderson DW (1976) Stress metabolism: water stress, growth and osmotic adjustment. Phil Trans R Soc London Series B Biol Sci 273:479–500. doi:10.1098/rstb.1976.0026 CrossRefGoogle Scholar
  31. IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univertisy Press, CrambridgeGoogle Scholar
  32. Jyske T, Holtta T, Makinen H, Nojd P, Lumme I, Spiecker H (2010) The effect of artificially induced drought on radial increment and wood properties of Norway spruce. Tree Physiol 30:103–115. doi:10.1093/treephys/tpp099 PubMedCrossRefGoogle Scholar
  33. Korner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459. doi:10.1007/s004420050540 CrossRefGoogle Scholar
  34. Lebourgeois F, Merian P, Courdier F, Ladier J, Dreyfus P (2012) Instability of climate signal in tree-ring width in Mediterranean mountains: a multi-species analysis. Trees-Struct Funct 26:715–729. doi:10.1007/s00468-011-0638-7 CrossRefGoogle Scholar
  35. Linares JC, Camarero JJ, Carreira JA (2009) Plastic responses of Abies pinsapo xylogenesis to drought and competition. Tree Physiol 29:1525–1536. doi:10.1093/treephys/tpp084 PubMedCrossRefGoogle Scholar
  36. Linares JC, Camarero JJ, Carreira JA (2010) Competition modulates the adaptation capacity of forests to climatic stress: insights from recent growth decline and death in relict stands of the Mediterranean fir Abies pinsapo. J Ecol 98:592–603. doi:10.1111/j.1365-2745.2010.01645.x CrossRefGoogle Scholar
  37. Liphschitz N, Levyadun S (1986) Cambial activity of evergreen and seasonal dimorphics around the Mediterranean. Iawa Bull 7:145–153Google Scholar
  38. Lupi C, Morin H, Deslauriers A, Rossi S (2010) Xylem phenology and wood production: resolving the chicken-or-egg dilemma. Plant Cell Environ 33:1721–1730. doi:10.1111/j.1365-3040.2010.02176.x PubMedCrossRefGoogle Scholar
  39. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. doi:10.1111/j.1469-8137.2008.02436.x PubMedCrossRefGoogle Scholar
  40. McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059. doi:10.1104/pp.110.170704 PubMedCrossRefGoogle Scholar
  41. Michelot A, Simard S, Rathgeber C, Dufrene E, Damesin C (2012) Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol 32:1033–1045PubMedCrossRefGoogle Scholar
  42. Nizinski JJ, Saugier B (1988) A model of leaf budding and development for a mature Quercus forest. J Appl Ecol 25:643–652. doi:10.2307/2403851 CrossRefGoogle Scholar
  43. Oberhuber W, Gruber A (2010) Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees - Struct Funct 24:887–898. doi:10.1007/s00468-010-0458-1 CrossRefGoogle Scholar
  44. Olano JM, Eugenio M, Garcia-Cervigon AI, Folch M, Rozas V (2012) Quantitative tracheid anatomy reveals a complex environmental control of wood structure in continental Mediterranean climate. Int J Plant Sci 173:137–149. doi:10.1086/663165 CrossRefGoogle Scholar
  45. Oribe Y, Funada R, Kubo T (2003) Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees-Struct Funct 17:185–192. doi:10.1007/s00468-002-0231-1 Google Scholar
  46. Oribe Y, Funada R, Shibagaki M, Kubo T (2001) Cambial reactivation in locally heated stems of the evergreen conifer Abies sachalinensis (Schmidt) Masters. Planta 212:684–691PubMedCrossRefGoogle Scholar
  47. Pasho E, Julio Camarero J, Vicente-Serrano SM (2012) Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees-Struct Funct 26:1875–1886. doi:10.1007/s00468-012-0756-x CrossRefGoogle Scholar
  48. Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006) Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell Environ 29:1618–1628. doi:10.1111/1365-3040.2006.01539.x PubMedCrossRefGoogle Scholar
  49. Ripullone F, Guerrieri MR, Nole A, Magnani F, Borghetti M (2007) Stomatal conductance and leaf water potential responses to hydraulic conductance variation in Pinus pinaster seedlings. Trees-Struct Funct 21:371–378. doi:10.1007/s00468-007-0130-6 CrossRefGoogle Scholar
  50. Rossi S, Anfodillo T, Menardi R (2006a) Trephor: a new tool for sampling microcores from tree stems. Iawa J 27:89–97CrossRefGoogle Scholar
  51. Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152:1–12PubMedCrossRefGoogle Scholar
  52. Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006b) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310PubMedCrossRefGoogle Scholar
  53. Rossi S, Deslauriers A, Gricar J, Seo JW, Rathgeber CBK, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17:696–707. doi:10.1111/j.1466-8238.2008.00417.x CrossRefGoogle Scholar
  54. Rozas V, Lamas S, Garcia-Gonzalez I (2009) Differential tree-growth responses to local and large-scale climatic variation in two Pinus and two Quercus species in northwest Spain. Ecoscience 16:299–310. doi:10.2980/16-3-3212 CrossRefGoogle Scholar
  55. Sperry JS (2003) Evolution of water transport and xylem structure. Int J Plant Sci 164:S115–S127. doi:10.1086/368398 CrossRefGoogle Scholar
  56. Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500. doi:10.3732/ajb.93.10.1490 PubMedCrossRefGoogle Scholar
  57. Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, HeidelbergCrossRefGoogle Scholar
  58. Vicente-Serrano SM, Begueria S, Lopez-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718. doi:10.1175/2009jcli2909.1 CrossRefGoogle Scholar
  59. Vieira J, Campelo F, Nabais C (2009) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees-Struct Funct 23:257–265. doi:10.1007/s00468-008-0273-0 CrossRefGoogle Scholar
  60. Vieira J, Campelo F, Nabais C (2010) Intra-annual density fluctuations of Pinus pinaster are a record of climatic changes in the western Mediterranean region. Can J For Res-Revue Canadienne De Recherche Forestiere 40:1567–1575. doi:10.1139/X10-096 CrossRefGoogle Scholar
  61. Vieira J, Rossi S, Campelo F, Nabais C (2013) Are neighboring trees in tune? Wood formation study in Pinus pinaster. Eur J For Res. doi:10.1007/s10342-013-0734-x
  62. Vieira J, Rossi S, Campelo F, Freitas H, Nabais C (2013) Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agric For Meteorol 180:173–181. doi:10.1016/j.agrformet.2013.06.009 CrossRefGoogle Scholar
  63. von Wilpert K (1991) Intraanual variation of radial tracheid diameters as monitor of site specific water stress. Dendrochronologia 9:95–113Google Scholar
  64. Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57:1445–1459. doi:10.1093/jxb/erj125 PubMedCrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Joana Vieira
    • 1
  • Sergio Rossi
    • 2
  • Filipe Campelo
    • 1
  • Helena Freitas
    • 1
  • Cristina Nabais
    • 1
  1. 1.CFE – Centro de Ecologia Funcional, Departamento de Ciências da Vida, Faculdade de Ciências e TecnologiaUniversidade de CoimbraCoimbraPortugal
  2. 2.Départment des Sciences FoundamentalesUniversité du Québec à ChicoutimiChicoutimiCanada

Personalised recommendations