Annals of Forest Science

, Volume 70, Issue 7, pp 729–741 | Cite as

Assessing temporal variation of primary and ecosystem production in two Mediterranean forests using a modified 3-PG model

  • Angelo Nolè
  • Alessio Collalti
  • Federico Magnani
  • Pierpaolo Duce
  • Agostino Ferrara
  • Giuseppe Mancino
  • Serena Marras
  • Costantino Sirca
  • Donatella Spano
  • Marco BorghettiEmail author
Original Paper



Forest ecosystem carbon uptake is heavily affected by increasing drought in the Mediterranean region.


The objectives of this study were to assess the capacity of a modified 3-PG model to capture temporal variation in gross primary productivity (GPP), and ecosystem net carbon uptake (NEE) in two Mediterranean forest types.


The model was upgraded from a monthly (3-PG) to a daily time step (3-PGday), and a soil water balance routine was included to better represent soil water availability. The model was evaluated against seasonal GPP and NEE dynamics from eddy covariance measurements.


Simulated and measured soil water content values were congruent throughout the study period for both forest types. 3-PGday effectively described the following: GPP and NEE seasonal patterns; the transition of forest ecosystems from carbon sink to carbon source; however, the model overestimated diurnal ecosystem respiration values and failed to predict ecosystem respiration peaks.


The model served as a rather effective tool to represent seasonal variation in gross primary productivity, and ecosystem net carbon uptake under Mediterranean drought-prone conditions. However, its semi-empirical nature and the simplicity inherent in the original model formulation are obstacles preventing the model working well for short-term daily predictions.


Carbon balance Forest Ecosystem Mediterranean Drought Model 



The research was supported by a grant from the MIUR-FISR CarboItaly Project and, in part, by the MIUR-PRIN project-N. 20085FL4E4_002. Angelo Nolè acknowledges a STMS COST-fellowship (FP0603) and thanks Anniki Makela (University of Helsinki) for useful discussion and advices. We thank two anonymous referees and the associate editor, Barry Gardiner, for their constructive comments on the manuscript.


  1. Anderegg WRL, Berry JA, Field CB (2012) Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci 17:693–700. doi: 10.1016/j.tplants.2012.09.006 PubMedCrossRefGoogle Scholar
  2. Baldocchi DD, Harley PC (1995) Scaling carbon dioxide and water vapour exchange form leaf to canopy in a deciduous forest. II. Model testing and application. Plant Cell Envir 18:1157–1173. doi: 10.1111/j.1365-3040.1995.tb00625.x CrossRefGoogle Scholar
  3. Bond-Lamberty B, Wang CK, Gower ST (2004) A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob Change Biol 10:1756–1766. doi: 10.1111/j.1365-2486.2004.00816.x CrossRefGoogle Scholar
  4. Breuer L, Eckhardt K, Frede H (2003) Plant parameter values for models in temperate climates. Ecol Model 169:237–293. doi: 10.1016/S0304-3800(03)00274-6 CrossRefGoogle Scholar
  5. Campbell GS (1985) Soil physics with BASIC—transport models for soil-plant systems. Developments in Soil Science 14. Elsevier, New YorkGoogle Scholar
  6. Campbell GS, Norman JM (1998) An introduction to environmental biophysics. Wiley, New York, p 286CrossRefGoogle Scholar
  7. Chiesi M et al (2012) Use of BIOME-BGC to simulate water and carbon fluxes within Mediterranean macchia. Forest 5:38–43. doi: 10.3832/ifor0605-009 Google Scholar
  8. Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533. doi: 10.1038/nature03972 PubMedCrossRefGoogle Scholar
  9. Coops NC, Waring RH, Landsberg JJ (1998) Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity. Forest Ecol Manag 104:113–127. doi: 10.1016/S0378-1127(97)00248-X CrossRefGoogle Scholar
  10. Duursma RA, Kolari P, Perämäki M, Nikinmaa E, Hari P, Delzon S, Loustau D, Ilvesniemi H, Pumpanen J, Mäkelä A (2008) Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance. Tree Physiol 28:265–276. doi: 10.1093/treephys/28.2.265 PubMedCrossRefGoogle Scholar
  11. Feikema PM, Morris JD, Beverly CR, Collopy JJ, Baker TG, Lane PNJ (2010) Validation of plantation transpiration in south-eastern Australia estimated using the 3PG + forest growth model. Forest Ecol Manag 260:663–678. doi: 10.1016/j.foreco.2010.05.022 CrossRefGoogle Scholar
  12. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33, L08707. doi: 10.1029/2006GL025734 CrossRefGoogle Scholar
  13. Hoff C, Rambal S, Joffre R (2002) Simulating carbon and water flows and growth in a Mediterranean evergreen Quercus ilex coppice using the FOREST-BGC model. Forest Ecol Manag 164:121–136. doi: 10.1016/S0378-1127(01)00605-3 CrossRefGoogle Scholar
  14. IPCC (2007) Summary for policymakers. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 7–22Google Scholar
  15. Jarvis P, Rey A, Petsikos C, Wingate L, Rayment M, Pereira J, Banza J, David J, Miglietta F, Borghetti M, Manca G, Valentini R (2007) Drying and wetting of soils stimulates decomposition and carbon dioxide emission: the “Birch effect”. Tree Physiol 27:929–940. doi: 10.1093/treephys/27.7.929 PubMedCrossRefGoogle Scholar
  16. Keith H, Leuning R, Jacobsen KL, Cleugh HA, van Gorsel E, Raison RJ, Medlyn BE, Winters A, Keitel C (2009) Multiple measurements constrain estimates of net carbon exchange by a Eucalyptus forest. Agr Forest Meteorol 149:535–558. doi: 10.1016/j.agrformet.2008.10.002 CrossRefGoogle Scholar
  17. Landsberg JJ, Waring RH (1997) A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecol Manag 95:209–228. doi: 10.1016/S0378-1127(97)00026-1 CrossRefGoogle Scholar
  18. Law BE, Waring RH, Anthoni PM, Aber JD (2000) Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models. Glob Change Biol 6:155–168. doi: 10.1046/j.1365-2486.2000.00291.x CrossRefGoogle Scholar
  19. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol Manag 259:698–709CrossRefGoogle Scholar
  20. Makela A, Pulkkinen M, Kolari P, Lagergren F, Berbigier P, Lindroth A, Loustau D, Nikinmaa E, Vesala T, Hari P (2008) An empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe. Glob Change Biol 14:92–108. doi: 10.1111/j.1365-2486.2007.01463.x Google Scholar
  21. McCarthy HR, Luo YQ, Wullschleger SD (2012) Integrating empirical-modeling approaches to improve understanding of terrestrial ecology processes. New Phytol 195:523–525. doi: 10.1111/j.1469-8137.2012.04222.x PubMedCrossRefGoogle Scholar
  22. Monteith JL (1977) Climate and the efficiency of crop production in Britain. Phil Trans R Soc B 281:277–294CrossRefGoogle Scholar
  23. Nardini A, Battistuzzo M, Savi T (2013) Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol. doi: 10.1111/nph.12288 Google Scholar
  24. Nolè A, Law BE, Magnani F, Matteucci G, Ferrara A, Ripullone F, Borghetti M (2009) Application of the 3-PGS model to assess carbon accumulation in forest ecosystems at a regional level. Can J Forest Res 39:1647–1661. doi: 10.1139/X09-077 CrossRefGoogle Scholar
  25. Pereira JS, Mateus JA, Aires LM, Pita G, Pio C, David JS, Andrade V, Banza J, David TS, Paço TA, Rodrigues A (2007) Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems? The effect of drought. Biogeosciences 4:791–802CrossRefGoogle Scholar
  26. Piedallu C, Gégout J-C, Perez V, Lebourgeois F, Field R (2013) Soil water balance performs better than climatic water variables in tree species distribution modelling. Global Ecol Biogeogr 22:470–482. doi: 10.1111/geb.12012 CrossRefGoogle Scholar
  27. Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng YF, Grunzweig JM, Irvine J, Joffre R, Law BE, Loustau D, Miglietta F, Oechel W, Ourcival JM, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochem Cy 17:1104–1116. doi: 10.1029/2003GB002035 CrossRefGoogle Scholar
  28. Sands PJ, Landsberg JJ (2002) Parameterisation of 3-PG for plantation grown Eucalyptus globulus. Forest Ecol Manag 163:273–292. doi: 10.1016/S0378-1127(01)00586-2 CrossRefGoogle Scholar
  29. Shinozawa S, Campbell GS (1991) On the calculation of mean particle diameter and standard deviation from sand, silt, and clay fractions. Soil Sci 152:427–431CrossRefGoogle Scholar
  30. Tedeschi V, Rey A, Manca G, Jarvis PG, Valentini R, Borghetti M (2006) Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Glob Change Biol 12:110–121. doi: 10.1111/j.1365-2486.2005.01081.x CrossRefGoogle Scholar
  31. Tickle PK, Coops NC, Hafner SD, The Bago Science Team (2001) Assessing forest productivity at local scales across a native eucalypt forest using a process model, 3PG-SPATIAL. Forest Ecol Manag 152:275–291. doi: 10.1016/S0378-1127(00)00609-5 CrossRefGoogle Scholar
  32. Vitale M, Mancini M, Matteucci G, Francesconi F, Valenti R, Attorre F (2012) Model-based assessment of ecological adaptations of three forest tree species growing in Italy and impact on carbon and water balance at national scale under current and future climate scenarios. Forest 5:235–246. doi: 10.3832/ifor0634-005 Google Scholar
  33. Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD et al (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change 3:292–297CrossRefGoogle Scholar
  34. Xenakis G, Ray D, Mencuccini M (2008) Sensitivity and uncertainty analysis from a coupled 3-PG and soil organic matter decomposition model. Ecol Model 219:1–16. doi: 10.1016/j.ecolmodel.2008.07.020 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Angelo Nolè
    • 1
  • Alessio Collalti
    • 2
  • Federico Magnani
    • 3
  • Pierpaolo Duce
    • 4
  • Agostino Ferrara
    • 1
  • Giuseppe Mancino
    • 1
  • Serena Marras
    • 5
  • Costantino Sirca
    • 5
  • Donatella Spano
    • 5
  • Marco Borghetti
    • 1
    Email author
  1. 1.Scuola di Scienze Agrarie, Forestali, Alimentari e AmbientaliUniversità della BasilicataPotenzaItaly
  2. 2.Divisione Impatti su Agricoltura, Foreste ed Ecosistemi Naturali (IAFENT)Centro euroMediterraneo sui Cambiamenti Climatici (CMCC)ViterboItaly
  3. 3.Dipartimento di Colture ArboreeUniversità di BolognaBolognaItaly
  4. 4.IBIMET-CNR, Traversa la Crucca 3, Regione BaldincaSassariItaly
  5. 5.Dipartimento di Scienza della Natura e del TerritorioUniversità di SassariSassariItaly

Personalised recommendations