Annals of Forest Science

, Volume 71, Issue 2, pp 149–160 | Cite as

Potential spread of the pine processionary moth in France: preliminary results from a simulation model and future challenges

  • Christelle Robinet
  • Jérôme Rousselet
  • Alain Roques
Original Paper



Some forest insect pests are currently extending their range as a consequence of climate warming. However, in most cases, the evidence is mainly based on correlations and the underlying mechanism is not clearly known.


One of the most severe pests of pine forests in Europe, the pine processionary moth, Thaumetopoea pityocampa, is currently expanding its distribution as a result of climate warming and does not occupy entirely its potential habitat. A model describing its spread was developed to simulate its potential range in France under various climate change scenarios.


The spread model was divided into several sub-models to describe the growth, survival and dispersal of the species. The model was validated on the observed change of species distribution, its sensitivity was tested, and spread scenarios were simulated for the future.


The model shows that climate warming initiated the species range expansion in France since the early 1990s. The spread is now limited by dispersal capability, but human-mediated dispersal could accelerate the range expansion.


Species range expansion is an indicator of climate change. However, time lags can appear due to limited dispersal capabilities, and human-mediated dispersal could create satellite colonies and artificially accelerate the spread.


Thaumetopoea pityocampa Climate change Range expansion Insect Long-distance dispersal Spread model 



We are very grateful to Francis Goussard and Jacques Garcia for the intensive field survey to map the species range expansion and also for reporting specific observations about the spread pattern. We greatly acknowledge support for this work from URTICLIM project “Anticipation des effets du changement climatique sur l’impact écologique et sanitaire d’insectes forestiers urticants” (2008–2011) of the French “Agence Nationale de la Recherche” (ANR 07BDIV 013), FAST project “Analyse des évolutions régionalisées de la forêt métropolitaine face aux aléas climatiques et biotiques, avec des scénarios de gestion forestière d’atténuation et d’adaptation” (2010–2012) of the French Ministry of Ecology and Sustainable Development, PCLIM network “International research network about the adaptative response of processionary moths and their associated organisms to global change” (2011–2015) funded by metaprogramme ACCAF (Adaptation of Agriculture and Forestry to Climate Change) from INRA (French National Institute for Agricultural Research), the EU project ISEFOR (KBBE-2009-245268, FP7 Project, “Increasing Sustainability of European Forests”) (2010–2013) and the project ADRIEN “Arbres dispersés et rôle dans les invasions d’espèces nuisibles” (2012–2014) funded by the Centre Regional Council.


  1. Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262:263–286PubMedCrossRefGoogle Scholar
  2. Battisti A, Stastny M, Netherer S, Robinet C, Schopf A, Roques A, Larsson S (2005) Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol Appl 15:2084–2096CrossRefGoogle Scholar
  3. Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob Chang Biol 13:1368–1385CrossRefGoogle Scholar
  4. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81:71–95CrossRefGoogle Scholar
  5. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449PubMedCrossRefGoogle Scholar
  6. Bouhot-Delduc L (2005) La gradation de la chenille processionnaire du pin a culminé sur la façade atlantique lors de l’hiver 2003–2004. Bilan de la santé des forêts en 2004, 7 pp.
  7. Buffo E, Battisti A, Stastny M, Larsson S (2007) Temperature as a predictor of survival of the pine processionary moth in the Italian Alps. Agric Forest Entomol 9:65–72CrossRefGoogle Scholar
  8. Carrasco LR, Mumford JD, MacLeod A, Harwood T, Grabenweger G, Leach AW, Knight JD, Baker RHA (2010) Unveiling human-assisted dispersal mechanisms in invasive alien insects: integration of spatial stochastic simulation and phenology models. Ecol Model 221:2068–2075CrossRefGoogle Scholar
  9. CCAFS (2012) GCM—downscaled GCM data portal. CCAFS Climate Home web site. Accessed 26 September 2012
  10. Cheaib A, Badeau V, Boe J, Chuine I, Delire C, Dufrêne E, François C, Gritti ES, Legay M, Pagé C, Thuiller W, Viovy N, Leadley P (2012) Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol Lett 15:533–544PubMedCrossRefGoogle Scholar
  11. Chuine I (2010) Why does phenology drive species distribution? Phil Trans R Soc B 365:3149–3160PubMedCrossRefGoogle Scholar
  12. CTGREF-INRA (1980) La chenille processionnaire du pin. Organisation de la surveillance en forêt à partir de 1980. Ministère de l’Agriculture, CTGREF, Division de la Protection de la Nature, Saint Martin d’Hères, INRA. Station de Zoologie Forestière, Avignon (France), 40 ppGoogle Scholar
  13. Démolin G (1969) Comportement des adultes de Thaumetopoea pityocampa Schiff. Dispersion spatiale, importance écologique. Ann Sci For 1:81–102CrossRefGoogle Scholar
  14. Démolin G, Abgrall J-F, Bouhot-Delduc L (1996) Evolution de l’aire de la processionnaire du pin en France. Les cahiers du DSF 1-1996. La Santé des Forêts 1995:26–28Google Scholar
  15. Desprez-Loustau M-L, Marçais B, Nageleisen L-M, Piou D, Vannini A (2006) Interactive effects of drought and pathogens in forest trees. Ann For Sci 63:597–612CrossRefGoogle Scholar
  16. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  17. Dukes JS, Pontius J, Orwig D, Garnas JR, Rodgers VL, Brazee N, Cooke B, Theoharides KA, Stange EE, Harrington R, Ehrenfeld J, Gurevitch J, Lerdau M, Stinson K, Wick R, Ayres M (2009) Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? Can J For Res 39:231–248CrossRefGoogle Scholar
  18. ECA&D (2012) European Climate Assessment & Dataset web site. Accessed 26 September 2012
  19. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  20. Gatto P, Zocca A, Battisti A, Barrento MJ, Branco M, Paiva MR (2009) Economic assessment of managing processionary moth in pine forest: a case study in Portugal. J Environ Manage 90:683–691PubMedCrossRefGoogle Scholar
  21. Gilbert M, Guichard S, Freise J, Grégoire J-C, Heitland W, Straw N, Tilbury C, Augustin S (2005) Forecasting Cameraria ohridella invasion dynamics in recently invaded countries: from validation to prediction. J Appl Ecol 42:805–813CrossRefGoogle Scholar
  22. Goussard F, Saintonge F-X, Geri C, Auger-Rozenberg M-A, Pasquier-Barre F, Rousselet J (1999) Accroissement des risques de dégâts de la processionnaire du pin, Thaumetopoea pityocampa Denis & Schiff. en région Centre, dû au réchauffement climatique (Lepidoptera, Thaumetopoeidae). Ann Soc Entomol Fr 35:341–343Google Scholar
  23. Huchon H, Démolin G (1970) La bioécologie de la processionnaire du pin. Dispersion potentielle—dispersion actuelle. Revue Forestière Française, No. spécial «La lutte biologique en forêt», pp 220–234Google Scholar
  24. Jacquet J-S, Bosc A, O’Grady AP, Jactel H (2013) Pine growth response to processionary moth defoliation across a 40-year chronosequence. For Ecol Manag 293:29–38CrossRefGoogle Scholar
  25. Jactel H, Petit J, Desprez-Loustau M-L, Delzon S, Piou D, Battisti A, Koricheva J (2012) Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob Chang Biol 18:267–276CrossRefGoogle Scholar
  26. Klein EK, Lavigne C, Gouyon P-H (2006) Mixing propagules from discrete sources at long distance: comparing a dispersal tail to an exponential. BMC Ecol 6:3. doi: 10.1186/1472-6785-6-3 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Moutain pine beetle and forest carbon feedback to climate change. Nature 452:987–990PubMedCrossRefGoogle Scholar
  28. Montoya R (1981) La procesionaria del pino. Plagas de Insectos en las Masas Forestales Españolas. Ministerio de Agricultura Pesca y Alimentación, 14 ppGoogle Scholar
  29. Muirhead JR, Leung B, van Overdijk C, Kelly DW, Nandakumar K, Marchant KR, MacIsaac HJ (2006) Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Divers Distrib 12:71–79CrossRefGoogle Scholar
  30. Murray JD (2002) Mathematical biology I. An introduction, 3rd edn. Springer, New YorkGoogle Scholar
  31. Netherer S, Schopf A (2010) Potential effects of climate change on insect herbivores in European forests—general aspects and the pine processionary moth as specific example. For Ecol Manag 259:831–838CrossRefGoogle Scholar
  32. ONERC (2012) National observatory of the effects of climate warming. Accessed 08 October 2012
  33. Piou D, Nageleisen L-M, Desprez-Loustau M-L, Candau J-N (2006) Les risques sanitaires consécutifs à l’été 2003 à la lumière de la littérature. RDV Tech 11:28–33Google Scholar
  34. Pitt JPW, Kriticos DJ, Dodd MB (2011) Limits to simulating the future spread of invasive species: Buddleja davidii in New Zealand. Ecol Model 222:1880–1887CrossRefGoogle Scholar
  35. Robinet C (2006) Mathematical modelling of invasion processes in ecology: the pine processionary moth as a case study. PhD thesis, EHESS, Paris (in French with English summary). Accessed 05 October 2012
  36. Robinet C, Roques A (2010) Direct impacts of recent climate warming on insect populations. Integr Zool 5:132–142PubMedCrossRefGoogle Scholar
  37. Robinet C, Baier P, Pennerstorfer J, Schopf J, Roques A (2007) Modelling the effects of climate change on the pine processionary moth (Thaumetopoea pityocampa L.) expansion in France. Glob Ecol Biogeogr 16:460–471CrossRefGoogle Scholar
  38. Robinet C, Imbert C-E, Rousselet J, Sauvard D, Garcia J, Goussard F, Roques A (2012) Human-mediated long-distance jumps of the pine processionary moth in Europe. Biol Invasions 14:1557–1569CrossRefGoogle Scholar
  39. Rodriguez-Mahillo AI, Gonzalez-Muñoz M, Vega JM, López JA, Yart A, Kerdelhué C, Camafeita E, Ortiz JCG, Vogel H, Toffolo EP, Zovi D, Battisti A, Roques A, Moneo I (2012) Setae from the pine processionary moth (Thaumetopoea pityocampa) contain several relevant allergens. Contact Dermatitis 67:367–374. doi: 10.1111/j.1600-0536.2012.02107.x PubMedCrossRefGoogle Scholar
  40. Roques L, Soubeyrand S, Rousselet J (2011) A statistical-reaction–diffusion approach for analyzing expansion processes. J Theor Biol 274:43–51PubMedCrossRefGoogle Scholar
  41. Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Assessment of observed changes and responses in natural and managed systems. Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 79–131Google Scholar
  42. Rousselet J, Magnoux E, Gouppil G, Miard F, Goussard F, Garcia F, Roques A, Rossi J-P, Kerdelhué C, Salvato P, Simonato M, Battisti A (2011) Population genetic structure of the pine processionary moth at the northern edge: disentangling natural short-distance dispersal and human-mediated long-distance jumps in the colonization history. International Meeting on Pine Processionary Moths, Belgodère, Corsica, France, 17–19 October 2011Google Scholar
  43. Santos H, Paiva MR, Tavares C, Kerdelhué C, Branco M (2011) Temperature niche shift observed in a Lepidoptera population under allochronic divergence. J Evol Biol 24:1897–1905PubMedCrossRefGoogle Scholar
  44. SEDAC (2012) Gridded Population of the World, v3. SEDAC web site. Accessed 08 October 2012
  45. Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford Series in Ecology and Evolution. Oxford University Press, OxfordGoogle Scholar
  46. Togashi K, Shigesada N (2006) Spread of the pinewood nematode vectored by the Japanese pine sawyer: modelling and analytical approaches. Popul Ecol 48:271–283CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Christelle Robinet
    • 1
  • Jérôme Rousselet
    • 1
  • Alain Roques
    • 1
  1. 1.INRA, UR0633, Zoologie ForestièreOrléansFrance

Personalised recommendations