Advertisement

Annals of Forest Science

, Volume 71, Issue 2, pp 139–147 | Cite as

Understory dynamics after disturbance accelerate succession from spruce to beech-dominated forest—the Siggaboda case study

  • Andreas Bolte
  • Lutz Hilbrig
  • Britt Maria Grundmann
  • Andreas Roloff
Original Paper

Abstract

••Context

It is assumed that climate change will favour European beech (Fagus sylvatica L.) to Norway spruce (Picea abies [L.] Karst.) at its northern range margins due to climate change and induced disturbance events.

••Aims

An old-growth mixed forest of spruce and beech, situated near the northern beech margin, was studied to reveal effects of disturbances and response processes on natural forest dynamics, focussing on the understory.

••Methods

We carried out analyses on understory dynamics of beech and spruce in relation to overstory release. This was done based on a sequence of stand and tree vitality inventories after a series of abiotic and biotic disturbances.

••Results

It became apparent that beech (understory) has a larger adaptive capacity to disturbance impacts and overstory release (68 % standing volume loss) than spruce. Understory dynamics can play a key role for forest succession from spruce to beech-dominated forests. Disturbances display an acceleration effect on forest succession in the face of climate change.

••Conclusion

Beech is poised strategically to replace spruce as the dominant tree species at the study area. Due to an increasing productivity and a lower risk of stand failure, beech may raise into the focus of forestry in southern Sweden.

Keywords

Fagus sylvatica Picea abies Climate change Canopy disturbance Interspecific competition Storm Drought Bark beetle 

Notes

Acknowledgments

Dr. Tomasz Czajkowski (Thünen Institute of Forest Ecosystems Eberswalde), Heiko Rubbert, Dr. Thomas Kompa, Frauke Koch, Friederike Kampf, René Grippert (Göttingen University) and Dr. Lars Droessler (SLU Alnarp) supported us in field work. We thank all for the outstanding assistance.

Funding

This study was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG: RO 910/10, BO 1906/3), the Thure Rignells Foundation (Tranemåla Erik och Ebba Larssons samt Thure Rignells Stiftelse, Bengt Ljungström) and was conducted in co-operation with the Broadleaf Program (Ädellövprogrammet) of the Swedish Agricultural University (SLU), Southern Swedish Forest Research Centre at Alnarp (Prof. Dr. Magnus Löf, Prof. Dr. Jörg Brunet).

References

  1. Ammer C, Stimm B, Mosandl R (2008) Ontogenetic variation in the relative influence of light and belowground resources on European beech seedling growth. Tree Physiol 28:721–728. doi: 10.1093/treephys/28.5.721 PubMedCrossRefGoogle Scholar
  2. Atkinson D (2000) Root characteristics: why and what to measure. In: Smit AL, Bengough AG, Engels C, Van Noordwijk M, Pellerin S, Van De Geijn SC (eds) Root methods: a hand book. Springer, Berlin Heidelberg New York, pp 2–32Google Scholar
  3. Björkman L (1996) Long-term population dynamics of Fagus sylvatica at the northern limits of its distribution in southern Sweden: a paleoecological study. Holocene 6:225–234. doi: 10.1177/095968369600600208 CrossRefGoogle Scholar
  4. Björkman L (1999) The establishment of Fagus sylvatica at the stand-scale in southern Sweden. Holocene 9:237–245. doi: 10.1191/095968399668494320 CrossRefGoogle Scholar
  5. Björkman L, Bradshaw R (1996) The immigration of Fagus sylvatica L. and Picea abies (L.) Karst. into a natural forest stand in southern Sweden during the last 2000 years. J Biogeogr 23:235–244. doi: 10.1046/j.1365-2699.1996.00972.x CrossRefGoogle Scholar
  6. Blennow K, Olofsson E (2008) The probability of wind damage in forestry under changed wind climate. Clim Change 87:347–361. doi: 10.1007/s10584-007-9290-z Google Scholar
  7. Bolte A, Czajkowski T, Kompa T (2007) The north-eastern distribution range of European beech—a review. Forestry 80:413–429. doi: 10.1093/forestry/cpm028 CrossRefGoogle Scholar
  8. Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in Central Europe—climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482. doi: 10.1080/02827580903418224 CrossRefGoogle Scholar
  9. Bolte A, Hilbrig L, Grundmann B, Kampf F, Brunet J, Roloff A (2010) Climate change impacts on stand structure and competitive interactions in a Southern Swedish spruce–beech forest. Eur J Forest Res 129:261–276. doi: 10.1007/s10342-009-0323-1 CrossRefGoogle Scholar
  10. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30. doi: 10.1007/s10584-006-9210-7 CrossRefGoogle Scholar
  11. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton, P (2007) Regional climate projections. In: Solomon SD, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (Eds.) Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 848–940Google Scholar
  12. Coutts MP (1983) Root architecture and stability. Plant Soil 71:171–188. doi: 10.1007/BF02182653 CrossRefGoogle Scholar
  13. Coutts MP (1986) Components of tree stability in Sitka spruce on peaty gley soil. Forestry 59:173–197. doi: 10.1093/forestry/59.2.173 CrossRefGoogle Scholar
  14. Donat MG, Leckebusch GC, Wild S, Ulbrich U (2011) Future changes in European winter storm losses and extreme wind speeds inferred from GCM and RCM multi-model simulations. Nat Hazards Earth Syst Sci 11:1351–1370. doi: 10.5194/nhess-11-1351-2011 CrossRefGoogle Scholar
  15. Ellenberg H (1988) Vegetation ecology of central Europe. Cambridge University Press, Cambridge, United Kingdom, 731 ppGoogle Scholar
  16. Emborg J (1998) Understorey light conditions and regeneration with respect to the structural dynamics of a near-natural deciduous forest in Denmark. For Ecol Manage 106:83–95. doi: 10.1016/S0378-1127(97)00299-5 CrossRefGoogle Scholar
  17. Eriksson M (2007) The bark beetle Ips typographus (L.) on patches of dead or dying host trees: estimating the colonization success and risk of consequential tree deaths. PhD Dissertations in Biology no. 46, University of Joensuu, Finland, 68 ppGoogle Scholar
  18. Faccoli M (2009) Effect of weather on Ips typographus (Coleoptera Curculionidae) phenology, voltinism, and associated spruce mortality in the southeastern Alps. Environ Entomol 38:307–316. doi: 10.1603/022.038.0202 Google Scholar
  19. FAO [Food and Agriculture Organization] (2006) World reference base for soil resources 2006. World Soil Resources Reports 103, FAO, Rome, Italy, 122 ppGoogle Scholar
  20. Fang J, Lechowicz MJ (2006) Climatic limits for the present distribution of beech (Fagus L.) species in the world. J Biogeogr 33:1804–1819. doi: 10.1111/j1365-2699.2006.01533.x CrossRefGoogle Scholar
  21. Fischer A, Lindner M, Abs C, Lasch P (2002) Vegetation dynamics in Central European forest ecosystems (near-natural as well as managed) after storm events. Folia Geobotanica 37:17–32CrossRefGoogle Scholar
  22. Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167:353–376. doi: 10.1111/j.1469-8137.2005.01436.x PubMedCrossRefGoogle Scholar
  23. Grodzki W (2010) The decline of Norway spruce Picea abies (L.) Karst. stands in Beskid Śląski and Żywiecki: theoretical concept and reality. Beskydy 3:19–26Google Scholar
  24. Grundmann BM, Bolte A, Bonn S, Roloff A (2011) Impact of climatic variation on growth of Fagus sylvatica and Picea abies in southern Sweden. Scand J For Res 26:64–71. doi: 10.1080/02827581.2011.564392 CrossRefGoogle Scholar
  25. Gugerli F, Gall R, Meier F, Wermelinger B (2008) Pronounced fluctuations of spruce bark beetle (Scolytinae: Ips typographus) populations do not invoke genetic differentiation. For Ecol Manage 256:405–409. doi: 10.1016/j.foreco.2008.04.038 CrossRefGoogle Scholar
  26. Hannon GE, Niklasson M, Brunet J, Eliason P, Lindbladh M (2010) How long has the ‘hotspot’ been ‘hot’? Past stand-scale structures at Siggaboda nature reserve in southern Sweden. Biodivers Conserv 19:2167–2187. doi: 10.1007/s10531-010-0830-0 CrossRefGoogle Scholar
  27. Herzog KM, Thum R, Kronfuss G, Heldstab HJ, Hasler R (1998) Patterns and mechanisms of transpiration in a large subalpine Norway spruce (Picea abies (L.) Karst.). Ecol Res 13:105–112. doi: 10.1046/j.1440-1703.1998.00250.x CrossRefGoogle Scholar
  28. Jönsson AM, Harding S, Bärring L, Ravn HP (2007) Impact of climate change on the population dynamics of Ips typographus in southern Sweden. Agr For Met 146:70–81. doi: 10.1016/j.agrformet.2007.05.006 CrossRefGoogle Scholar
  29. Jönsson AM, Appelberg G, Harding S, Bärring L (2009) Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Glob Change Biol 15:486–499. doi: 10.1111/j.1365-2486.2008.01742.x CrossRefGoogle Scholar
  30. Jönsson AM, Bärring L (2010) Future impact on spruce bark beetle life cycle in relation to uncertainties in regional climate model data ensembles. Tellus A 63:158–173. doi: 10.1111/j.1600-0870.2010.00479.x CrossRefGoogle Scholar
  31. Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854. doi: 10.1038/nature02417 PubMedCrossRefGoogle Scholar
  32. Komonen A, Schroeder LM, Weslien J (2011) Ips typographus population development after severer storm in a nature reserve in southern Sweden. J Appl Entomol 135:132–141. doi: 10.1111/j.1439-0418.2010.01520.x CrossRefGoogle Scholar
  33. Latałowa M, van der Knaap WO (2006) Late Quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data. Quaternary Sci Rev 25:2780–2805. doi: 10.1016/j.quascirev.2006.06.007 CrossRefGoogle Scholar
  34. Lind P, Kjellström E (2008) Temperature and precipitation changes in Sweden, a wide range of model-based projections for the 21st century. Swedish Meteorological and Hydrological Institute. Report RMK no. 113, Norrköpping, Sweden, 50 ppGoogle Scholar
  35. Löf M, Bolte A, Welander NT (2005) Interacting effects of irradance and water stress on dry weight and biomass partitioning in Fagus sylvatica seedlings. Scand J For Res 20:322–328. doi: 10.1080/02827580500201593 CrossRefGoogle Scholar
  36. Mailly D, Kimmins JP, Busing RT (2000) Disturbance and succession in a coniferous forest of northwestern North America: simulations with DRYADES, a spatial gap model. Ecol Model 127:183–205. doi: 10.1016/S0304-3800(99)00208-2 CrossRefGoogle Scholar
  37. Meyer P (2005) Network of Strict Forest Reserves as reference system for close to nature forestry in Lower Saxony, Germany. For Snow Landsc Res 79:33–44Google Scholar
  38. Meyer P, Ackermann J, Balcar P, Boddenberg J, Detsch R, Förster B, Fuchs H, Hoffmann B, Keitel W, Kölbel M, Köthke C, Koss H, Unkrig W, Weber J, Willig J (2001) Untersuchung der Waldstruktur und ihrer Dynamik in Naturwaldreservaten. IHW publisher, Eching, Germany, 107 pp [in German]Google Scholar
  39. Müller J, Bußler H, Großner M, Rettelbach T, Duelli P (2008) The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodivers Conserv 17:2979–3001. doi: 10.1007/s10531-008-9409-1 CrossRefGoogle Scholar
  40. Nagel J, Duda H, Hansen J (2006) Forest simulator BWINPro7. Forst und Holz 61:427–429 [in German]Google Scholar
  41. Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstige A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus 63A:41–55. doi: 10.1111/j.1600-0870.2010.00466.x
  42. Økland B, Berryman A (2004) Resource dynamic plays a key role in regional fluctuations of the spruce bark beetles Ips typographus. Agric Forest Entomol 6:141–146. doi: 10.1111/j.1461-9555.2004.00214.x CrossRefGoogle Scholar
  43. Petterson H (1955) Die Massenproduktion des Nadelwaldes. Mitt Forstl Forsch-Anst Schwedens 45:392–580 [in German]Google Scholar
  44. Pretzsch H, Biber P, Ďurský J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manage 162:3–21. doi: 10.1016/S0378-1127(02)00047-6 CrossRefGoogle Scholar
  45. Pretzsch H, Schütze G (2005) Crown allometry and growing space efficiency of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) in pure and mixed stands. Plant Biol 7:628–639. doi: 10.1055/s-2005-865965 PubMedCrossRefGoogle Scholar
  46. Puhe J (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands—a review. For Ecol Manage 175:253–273. doi: 10.1016/S0378-1127(02)00134-2 CrossRefGoogle Scholar
  47. Raab B, Vedin H (eds) (1995) Climate, lakes and rivers. The National Atlas of Sweden. SNA, Stockholm, SwedenGoogle Scholar
  48. Røsting B, Kristjánsson JE (2008) A successful resimulation of the 7–8 January 2005 winter storm through initial potential vorticity modification in sensitive regions. Tellus A 60:604–619. doi: 10.1111/j.1600-0870.2008.00329.x CrossRefGoogle Scholar
  49. Schelhaas MJ, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biol 9:1620–1633. doi: 10.1046/j.1529-8817.2003.00684.x CrossRefGoogle Scholar
  50. Schlyter P, Stjernquist I, Bärring L, Jönsson AM, Nilsson C (2006) Assessment of the impacts of climate change and weather extremes on boreal forests in northern Europe, focusing on Norway spruce. Clim Res 31:75–84. doi: 10.3354/cr031075 CrossRefGoogle Scholar
  51. Schmid I (2002) The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech. Basic Appl Ecol 3:339–355. doi: 10.1078/1439-1791-00116 CrossRefGoogle Scholar
  52. Schroeder LM (2001) Tree mortality by the bark beetle Ips typographus (L.) in storm-disturbed stands. Integr Test Manage Rev 6:169–175. doi: 10.1023/A:1025771318285 CrossRefGoogle Scholar
  53. Schröter M, Härdtle W, Oheimb GV (2012) Crown plasticity and neighborhood interactions of European beech (Fagus sylvatica L.) in an old-growth forest. Eur J Forest Res 131:787–798. doi: 10.1007/s10342-011-0552-y CrossRefGoogle Scholar
  54. Seidl R, Rammer W, Jäger D, Lexer MJ (2008) Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. For Ecol Manage 256:209–220. doi: 10.1016/j.foreco.2008.04.002 CrossRefGoogle Scholar
  55. Seidl R, Blennow K (2012) Pervasive growth reduction in Norway spruce forests following wind disturbance. PLoS One 7:e33301. doi: 10.1371/journal.pone.0033301 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Sjörs H (1999) The background: geology, climate and zonation. In: Rydin H, Snoeijs P, Diekmann M (Eds.) Swedish Plant Geography. Acta Phytogeogr Suec 84:5–14Google Scholar
  57. StatSoft Inc (2009) STATISTICA for Windows, version 9.0. Available from http://www.statsoft.com (accessed 28 December 2011)
  58. WeatherOnline (2011) Climate Robot: Växjö/Kronoberg (186 m). Available from http://www.weatheronline.co.uk/Sweden/VaexjoeKronob.htm (accessed 28 December 2011)
  59. Yue C, Kohnle U, Hein S (2008) Combining tree- and stand-level models: a new approach to growth prediction. For Sci 54:553–566Google Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Andreas Bolte
    • 1
    • 2
  • Lutz Hilbrig
    • 1
  • Britt Maria Grundmann
    • 3
  • Andreas Roloff
    • 3
  1. 1.Johann Heinrich von Thünen-Institute (TI), Institute of Forest EcosystemsEberswaldeGermany
  2. 2.Department of Silviculture and Forest Ecology of the Temperate ZonesGeorg-August-University GöttingenGöttingenGermany
  3. 3.Institute of Forest Botany and Forest ZoologyTechnical University of Dresden (TUD)TharandtGermany

Personalised recommendations