Annals of Forest Science

, Volume 70, Issue 3, pp 251–260 | Cite as

Nutrient concentration and allometric models for hybrid eucalyptus planted in France

  • Alain BouvetEmail author
  • Nicolas Nguyen-The
  • Francis Melun
Original Paper



Short rotation coppice (SRC) of hybrid Eucalyptus has been developed in France for almost 30 years for the production of pulp and paper and, since a few years, for energy purposes. In the traditional pulp production, only the stems are harvested, whereas the whole biomass may be harvested for energy purposes. Thus, a range of different harvest scenarios need to be considered with higher plantation densities or younger age of harvest for example.


The objective of this study was to build models to estimate biomass and nutrient content of eucalyptus at different ages and so to estimate the production and the nutrient exportation of a SRC, depending on the different harvest scenarios.


Over 250 trees were sampled in 16 stands at ages from 1 to 15 years. For each tree, biomass of different compartments and nutrient contents were recorded.


A complete set of equations for the four compartments (wood, bark, branches, and leaves) of aboveground biomass and for nutrient concentration was set up.


Biomass and its allocation to different compartments and nutrient concentrations depended on the dimension and/or the age of the tree. In particular, nutrient concentration decreased with increasing tree diameter.


Eucalyptus Biomass Nutrient concentration Allometry 



The team is grateful to all landowners who allowed the section of some trees for this study and to Fibre Excellence for its continuous support to research projects on eucalyptus in France.


This work was supported by The Tuck foundation [in the framework of the OPTIMAL project (the majority of the field data were collected in this framework)] and ADEME [convention 0501c0136 (data of year 2000)].


  1. Antonio N, Tomé M, Tomé J, Soares P, Fontes L (2007) Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass. Can J For Res 37:895–906. doi: 10.1139/X06-276 CrossRefGoogle Scholar
  2. Attiwil PM, Adams MA (1996) Nutrition of eucalyptus. CSIRO, Collingwood, 440 pp. ISBN 0-643-057579Google Scholar
  3. Augusto L, Meredieu C, Bert D, Trichet P, Porte A, Bosc A, Lagane F, Loustau D, Pellerin S, Danjon F, Ranger J, Gelpe J (2008) Improving models of forest nutrient export with equations that predict the nutrient concentration of tree compartments. Ann For Sci 65:808. doi: 10.1051 CrossRefGoogle Scholar
  4. Cauvin B, Melun F (1994) Guide de culture du TCR Eucalyptus. AFOCEL, Fiche Informations-Forêt no. 486Google Scholar
  5. De Morogues F, Nguyen-The N, Berthelot A, Melun F (2011) Réflexions sur la rentabilité des taillis à courte et à très courte rotation d’Eucalyptus et de Peuplier. Rev For Fr 63:705–721Google Scholar
  6. Furnival GM (1961) An index for comparing equations used in constructing volume tables. For Sci 7:337–341Google Scholar
  7. Hernandez J, Del Pino A, Salvo L, Arrarte G (2009) Nutrient export and harvest residue decomposition patterns of a Eucalyptus dunnii Maiden plantation in temperate of Uruguay. For Ecol Manage 258:92–99CrossRefGoogle Scholar
  8. Iglesias-Trabado G, Wisterman D (2008) Eucalyptus universalis. Global cultivated eucalyptus forest map. In: GIT Forestry Consulting’s Blog EUCALYPTOLOGICS Information Resources on Eucalyptus Cultivation Worldwide. Available at
  9. Judd TS, Attiwil PM, Adams MA (1996) Nutrient concentrations in eucalyptus: a synthesis in relation to differences between taxa, sites and components. In: Attiwil PM, Adams M (eds) Nutrition of eucalyptus. CSIRO, Australia. ISBN 0-643-057579Google Scholar
  10. Laclau JP, Bouillet JP, Ranger J (2000) Dynamics of biomass and nutrient accumulation in a clonal plantation of Eucalyptus in Congo. For Ecol Manage 128:181–196CrossRefGoogle Scholar
  11. Laclau JP, Bouillet JP, Ranger J, Joffre R, Gouma R, Saya A (2001) Dynamics of nutrient translocation in stemwood across an age series of a Eucalyptus hybrid. Ann Bot 88:1079–1092CrossRefGoogle Scholar
  12. Laclau JP, Deleporte P, Ranger J, Bouillet JP, Kazotti G (2003) Nutrient dynamics throughout the rotation of Eucalyptus clonal stands in Congo. Ann Bot 91:879–892PubMedCrossRefGoogle Scholar
  13. Melun F, Nguyen-The N (2006) Fiches clonales eucalyptus—E. gundal. AFOCEL, 4 ppGoogle Scholar
  14. Melun F, Nguyen-The N (2012) L’eucalyptus en France: une espèce remarquable pour la production de biomasse. Revue forestière française no. 1-2012Google Scholar
  15. Merino A, Balboa MA, Rodriguez Soalleiro R, Alvarez Gonzalez JG (2005) Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. For Ecol Manage 207:325–339CrossRefGoogle Scholar
  16. Moreaux V, O’Grady AP, Nguyen-The N, Loustau D (2012) Water use of young maritime pine and Eucalyptus stands in response to climatic drying in south-western France. Plant Ecol Divers. doi: 10.1080/17550874.2012.668228
  17. Mulugeta Z (2008) Temporal changes of biomass production, soil properties and ground flora in Eucalyptus globulus plantations in the central highlands of Ethiopia. Ph.D. thesis, Swedish University of Agricultural Sciences, UppsalaGoogle Scholar
  18. Nguyen-The N, Da Sylva Perez D, Melun F, Bouvet A (2010) Evaluating the potential of biomass production, nutrient export and woodchips quality by eucalyptus in a perspective of culture in VSRC. In: 18th European Biomass Conference and Exhibition Proceedings, 3–7 May, Lyon, France. ISBN 978-8889407561Google Scholar
  19. Nouvellon Y, Laclau JP, Epron D, Kinana A, Mabiala A, Roupsard O, Bonnefond JM, Le Maire G, Marsden C, Bontemps JD, Saint-André L (2010) Within-stand and seasonal variations of specific leaf area in a clonal Eucalyptus plantation in the Republic of Congo. For Ecol Manage 259:1796–1807CrossRefGoogle Scholar
  20. Potts BM, Potts WC (1986) Eucalypt breeding in France. Aust Fors 49:210–218CrossRefGoogle Scholar
  21. Razakamanarivo H, Razakavololona A, Razafindrakoto MA, Vieilledent G, Albrecht A (2011) Below-ground biomass production and allometric relationships of eucalyptus coppice plantation in the central highlands of Madagascar. Biomass Bioenergy 2012:1–10Google Scholar
  22. Saint-André L, Thongo M’Bou A, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, Deleporte P, Hamel O, Nouvellon Y (2005) Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For Ecol Manage 205:199–214CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Alain Bouvet
    • 1
    Email author
  • Nicolas Nguyen-The
    • 2
  • Francis Melun
    • 3
  1. 1.Direction Innovation RechercheFCBAParisFrance
  2. 2.Station Sud-Est, Domaine UniversitaireFCBAGrenoble CedexFrance
  3. 3.Station Sud-OuestFCBACestasFrance

Personalised recommendations