Annals of Forest Science

, Volume 70, Issue 3, pp 229–239 | Cite as

Distribution of coarse and fine roots of Theobroma cacao and shade tree Inga edulis in a cocoa plantation

  • Pekka Nygren
  • Humberto A. Leblanc
  • Miaoer Lu
  • Cristino A. Gómez Luciano
Original Paper


• Context

Cocoa (Theobroma cacao L.) is often cultivated below legume shade trees, but root interactions between the species are not well known. The first step in understanding these interactions is the description of spatial root system distribution of cocoa and shade trees.

• Aims

We studied the root distributions of cocoa and Inga edulis Mart. (inga) in an agroforestry plantation in the humid tropics of Costa Rica.

• Methods

Fine roots were sampled by soil coring, and a fractal root architecture model parameterised with data from partial root excavations was used for determining coarse root distribution.

• Results

Fine root length in the 0–50 cm soil layer was 26,762 and 22,026 km ha−1 for cocoa and inga, respectively, with 24 % and 23 % of fine root length of cocoa and inga, respectively, in the 0–2 cm layer. Horizontally, root distributions of the two species with cocoa at 3 × 3 m and inga at 9 × 9 m spacing overlapped strongly, while inga did not cover all points at 18 × 18 m spacing.

• Conclusion

Both species seem to efficiently capture nutrients released from the litter layer on the soil surface, and nutrient leaching in shaded cocoa plantations is unlikely. The proximity of root systems may facilitate N exchange between the N2-fixing inga and cocoa, but competition for other nutrients is likely.


Agroforestry Fractal networks Organic farming Resource sharing Root architecture Root length 



We thank Mr. Ricardo Palacios, the farm manager, for accommodating our research with cocoa cultivation in the plantations, Mr. Miika Kurppa for supervising the coarse root measuring team and Mr. Oscar Gayle for assisting in fine root sampling and processing.


The study was funded by the Academy of Finland (grant 129166) and the EARTH University Research Committee.


  1. Atger C, Edelin C (1994a) Premières données sur l’architecture comparée des systèmes racinaires et caulinaires. Can J Bot 72:963–975CrossRefGoogle Scholar
  2. Atger C, Edelin C (1994b) Stratégies d’occupation du milieu souterrain par les systèmes racinaires des arbres. Rev Ecol (Terre Vie) 49:343–356Google Scholar
  3. Dossa EL, Fernandes ECM, Reid WS, Ezui K (2008) Above- and below-ground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor Sys 72:103–115CrossRefGoogle Scholar
  4. Gold MA, Rietveld WJ, Garrett HE, Fisher RF (2000) Agroforestry nomenclature, concepts, and practices for the USA. In: Garrett HE, Rietveld WJ, Fisher RF (eds) North American agroforestry: an integrated science and practice. American Society of Agronomy, Madison, pp 63–77Google Scholar
  5. Gómez Luciano CA (2008) Distribución de Raíces Finas de Inga edulis y Theobroma cacao en el Suelo de un Sistema Agroforestal Orgánico. Proyecto de Graduación. Universidad EARTH, Guácimo, p 17Google Scholar
  6. Jonsson K, Fidjeland L, Maghembe JA, Högberg P (1988) The vertical distribution of fine roots of five tree species and maize in Morogoro, Tanzania. Agrofor Sys 6:63–69Google Scholar
  7. Jose S, Gillespie AR, Seifert JR, Mengel DP, Pope PE (2000) Defining competition vectors in a temperate alley cropping system in the midwestern USA. III. Competition for nitrogen and litter decomposition dynamics. Agrofor Sys 48:61–77CrossRefGoogle Scholar
  8. Kalliokoski T, Sievänen R, Nygren P (2010) Tree roots as self-similar branching structures: axis differentiation and segment tapering in coarse roots of three boreal forest tree species. Trees 24:219–236CrossRefGoogle Scholar
  9. Leblanc HA, McGraw RL, Nygren P (2007) Dinitrogen-fixation by three Neotropical agroforestry tree species under semi-controlled field conditions. Plant Soil 291:99–209CrossRefGoogle Scholar
  10. Lehmann J, Peter I, Steglich C, Gebauer G, Huwe B, Zech W (1998) Below-ground interactions in dryland agroforestry. For Ecol Manage 111:157–169CrossRefGoogle Scholar
  11. Mayer DG, Butler DG (1993) Statistical validation. Ecol Modell 68:21–32CrossRefGoogle Scholar
  12. Mogollón Frasca BA (2007) Efecto de la disponibilidad de nitrato y amonio, en la distribución de raíces en un sistema agroforestal. Proyecto de Graduación. Universidad EARTH, Guácimo, p 26Google Scholar
  13. Muñoz F, Beer J (2001) Fine root dynamics of shaded cocoa plantations in Costa Rica. Agrofor Sys 51:119–130CrossRefGoogle Scholar
  14. Nygren P, Leblanc HA (2009) Natural abundance of 15N in two cocoa plantations with legume and non-legume shade trees. Agrofor Sys 76:303–315CrossRefGoogle Scholar
  15. Nygren P, Lu M, Ozier-Lafontaine H (2009) Effects of turnover and internal variability of tree root systems on modelling coarse root architecture: comparing simulations for young Populus deltoides with field data. Can J For Res 39:97–108CrossRefGoogle Scholar
  16. Ozier-Lafontaine H, Lecompte F, Sillon J-F (1999) Fractal analysis of the root architecture of Gliricidia sepium for the spatial prediction of root branching, size and mass. Model development and evaluation in agroforestry. Plant Soil 209:167–180CrossRefGoogle Scholar
  17. Rita H, Ekholm P (2007) Showing similarity of results given by two methods: a commentary. J Environ Poll 145:383–386CrossRefGoogle Scholar
  18. Salas E, Ozier-Lafontaine H, Nygren P (2004) A fractal root model applied for estimating the root biomass and architecture in two tropical legume tree species. Ann For Sci 61:337–345CrossRefGoogle Scholar
  19. Schroth G (1999) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agrofor Sys 43:5–34CrossRefGoogle Scholar
  20. Schroth G, Zech W (1995) Root length dynamics in agroforestry with Gliricidia sepium as compared to sole cropping in the semi-deciduous rainforest zone of West Africa. Plant Soil 170:297–306CrossRefGoogle Scholar
  21. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New York, p 787Google Scholar
  22. Tobin B, Čermák J, Chiatante D, Danjon F, Di Iorio A, Dupuy L, Eshel A, Jourdan C, Kalliokoski T, Laiho R, Nadezhdina N, Nicoll B, Pagès L, Silva J, Spanos I (2007) Towards developmental modelling of tree root systems. Plant Biosys 141:481–501CrossRefGoogle Scholar
  23. van Noordwijk M (1993) Roots: length, biomass, production and mortality. In: Anderson JM, Ingram JSI (eds) Tropical soil biology and fertility: a handbook of methods. CAB International, Wallingford, pp 132–144Google Scholar
  24. van Noordwijk M, Spek LY, De Willingen P (1994) Proximal root diameters as predictors of total root system size for fractal branching models. I. Theory. Plant Soil 164:107–118CrossRefGoogle Scholar
  25. van Noordwijk M, Lawson G, Soumaré A, Groot JJR, Hairiah K (1996) Root distribution of trees and crops: competition and/or complementarity. In: Ong CK, Huxley P (eds) Tree–crop interactions: a physiological approach. CAB International, Wallingford, pp 319–364Google Scholar
  26. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126PubMedCrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2012

Authors and Affiliations

  • Pekka Nygren
    • 1
    • 4
  • Humberto A. Leblanc
    • 2
  • Miaoer Lu
    • 3
  • Cristino A. Gómez Luciano
    • 2
    • 5
  1. 1.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.EARTH UniversityLas Mercedes de GuácimoCosta Rica
  3. 3.ESRI Support ServiceRedlandsUSA
  4. 4.Finnish Society of Forest ScienceVantaaFinland
  5. 5.Loma de CabreraDominican Republic

Personalised recommendations