Advertisement

Annals of Forest Science

, Volume 70, Issue 2, pp 173–183 | Cite as

Carbon isotopic signature of CO2 emitted by plant compartments and soil in two temperate deciduous forests

  • Florence Maunoury-DangerEmail author
  • Nicolas Chemidlin Prevost Boure
  • Jérôme Ngao
  • Daniel Berveiller
  • Claude Brechet
  • Eric Dufrene
  • Daniel Epron
  • Jean-Christophe Lata
  • Bernard Longdoz
  • Caroline Lelarge-Trouverie
  • Jean-Yves Pontailler
  • Kamel Soudani
  • Claire Damesin
Original Paper

Abstract

Context

The carbon isotope composition of the CO2 efflux (δ13CE) from ecosystem components is widely used to investigate carbon cycles and budgets at different ecosystem scales. δ13CE, was considered constant but is now known to vary along seasons. The seasonal variations have rarely been compared among different ecosystem components.

Aims

We aimed to characterise simultaneously the seasonal dynamics of δ13CE in different compartments of two temperate broadleaved forest ecosystems.

Methods

Using manual chambers and isotope ratio mass spectrometry, we recorded simultaneously δ13CE and δ13C of organic matter in sun leaves, current-year twigs, trunk bases and soil in an oak and a beech forest during 1 year.

Results

In the two forests, δ13CE displayed a larger variability in the tree components than in the soil. During the leafy period, a pronounced vertical zonation of δ13CE was observed between the top (sun leaves and twigs with higher values) and bottom (trunk and soil with lower values) of the ecosystem. No correlation was found between δ13CE and δ13C of organic matter. Causes for these seasonal variations and the vertical zonation in isotope signature are discussed.

Conclusion

Our study shows clear differences in values as well as seasonal dynamics of δ13CE among different components in the two ecosystems. The temporal and local variation of δ13CE cannot be inferred from organic matter signature or CO2 emission rates.

Keywords

Carbon isotopic composition CO2 efflux Oak forest Beech forest 

Abbreviations

ET

Trunk CO2 efflux

ES

Soil CO2 efflux

EECO

Ecosystem CO2 efflux

δ13C

Carbon isotope composition

δ13CE

Carbon isotope composition of CO2 efflux

δ13CEECO

δ13CE of ecosystem

δ13CEL

δ13CE of leaves

δ13CETG

δ13CE of twigs

δ13CET

δ13CE of trunk

δ13CES

δ13CE of soil

δ13COM

δ13C of total organic matter

δ13COM

δ13COM of leaf

δ13COMT

δ13COM of twig

δ13COMT

δ13COM of trunk

δ13COMS

δ13C of soil total organic matter

Doy

Day of year

Notes

Acknowledgements

The authors are grateful to the Office National des Forêts, especially M. Bénard, for facilitating experimental work at Barbeau. We acknowledge N. Bréda (INRA Nancy, France) for trunk growth measurements at Hesse. The platform Métabolisme-Métabolome of the IFR87 is acknowledged for the isotope measurements. We are grateful to M. Danger and X. Raynaud for valuable discussions on the manuscript and to E. M. Gross for revising the manuscript. We thank two anonymous reviewers and the editor for their helpful comments and improvements to the manuscript.

Funding

This research was funded by the French projects ‘Ministère délégué à la recherche-ACI Jeunes Chercheurs’ (no. JC10009) and ‘Programme National ACI/FNS ECCO, PNBC’ (convention no. 0429 FNS) and by the ESE laboratory thanks to funds from Paris-Sud University and CNRS.

References

  1. Aubrey DP, Teskey RO (2009) Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux. New Phytol 184:35–40PubMedCrossRefGoogle Scholar
  2. Barnard RL, Salmon Y, Kodama N, Sörgel K, Holst J, Rennenberg H, Gessler A, Buchmann N (2007) Evaporative enrichment and time lags between δ18O of leaf water and organic pools in a pine stand. Plant Cell Environ 30:539–550PubMedCrossRefGoogle Scholar
  3. Bowling D, Mc Dowell N, Bond B, Law B, Ehleringer J (2002) 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131:113–124CrossRefGoogle Scholar
  4. Bowling D, Pataki D, Randerson J (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178:24–40PubMedCrossRefGoogle Scholar
  5. Buchmann N, Guel JM, Barigah TS, Ehleringer JR (1997) Interseasonal comparison of CO2 concentrations, isotopic composition and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110:120–131Google Scholar
  6. Cernusak LA, Tcherkez G, Keitel C, Cornwell WK, Santiago LS, Knohl A, Barbour MM, Williams DG, Reich PB, Ellsworth DS, Dawson TE, Griffiths HG, Farquhar GD, Wright IJ (2009) Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct Plant Biol 36:199–213CrossRefGoogle Scholar
  7. Ceschia E, Damesin C, Lebaube S, Pontailler J, Dufrene E (2002) Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica). Ann For Sci 59:801–812CrossRefGoogle Scholar
  8. Chemidlin Prévost-Bouré N, Ngao J, Berveiller D, Bonal D, Damesin C, Dufrêne E, Lata JC, Le Dantec V, Longdoz B, Ponton S, Soudani K, Epron D (2009) Root exclusion through trenching does not affect the isotopic composition of soil CO2 efflux. Plant Soil 319:1–13CrossRefGoogle Scholar
  9. Damesin C, Lelarge C (2003) Carbon isotope composition of current-year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant Cell Environ 26:207–219CrossRefGoogle Scholar
  10. Damesin C, Barbaroux C, Berveiller D, Lelarge C, Chaves M, Maguas C, Maia R, Pontailler JY (2005) The carbon isotope composition of CO2 respired by trunks: comparison of four sampling methods. Rapid Commun Mass Spectrom 19:369–374PubMedCrossRefGoogle Scholar
  11. Dannoura M, Maillard P, Fresneau C, Plain C, Berveiller D, Gerant D, Chipeaux C, Bosc A, Ngao J, Damesin C, Loustau D, Epron D (2011) In situ assessment of the velocity of carbon transfer by tracing 13C in trunk CO2 efflux after pulse labelling: variations among tree species and seasons. New Phytol 190:181–192CrossRefGoogle Scholar
  12. Eglin T, Francois C, Michelot A, Delpierre N, Damesin C (2010) Linking intra-seasonal variations in climate and tree-ring δ13C: A functional modelling approach. Ecol Model 221:1779–1797CrossRefGoogle Scholar
  13. Eglin T, Fresneau C, Lelarge-Trouverie C, François C, Damesin C (2009) Leaf and twig δ13C during growth in relation to biochemical composition and respired CO2. Tree Physiol 29:777–788PubMedCrossRefGoogle Scholar
  14. Ekblad A, Bostrom B, Holm A, Comstedt D (2005) Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143:136–142PubMedCrossRefGoogle Scholar
  15. Epron D, Le Dantec V, Dufrene E, Granier A (2001) Seasonal dynamics of soil carbon dioxide efflux and stimulated rhizosphere respiration in a beech forest. Tree Physiol 21:145–152PubMedCrossRefGoogle Scholar
  16. Epron D, Ngao J, Dannoura M, Bakker MR, Zeller B, Bazot S, Bosc A, Plain C, Lata JC, Priault P, Barthes L, Loustau D (2011) Seasonal variations of belowground carbon transfer assessed by in situ 13CO2 pulse labelling of trees. Biogeosciences 8:1153–1168CrossRefGoogle Scholar
  17. Gessler A, Keitel C, Kodama N, Weston C, Winters AJ, Keith H, Grice K, Leuning R, Farquhar GD (2007) δ13C of organic matter transported from the leaves to the roots in Eucalyptus delegatensis: short-term variations and relation to respired CO2. Funct Plant Biol 34:692–706CrossRefGoogle Scholar
  18. Gessler A, Tcherkez G, Karyanto O, Keitel C, Ferrio JP, Ghashghaie J, Kreuzwieser J, Farquhar GD (2009) On the metabolic origin of the carbon isotope composition of CO2 evolved from darkened light-adapted leaves in Ricinus communis. New Phytol 181:374–386PubMedCrossRefGoogle Scholar
  19. Grossiord C, Mareschal L, Epron D (2012) Transpiration alters the contribution of autotrophic and heterotrophic components of soil CO2 efflux. New Phytol 194:647–653. doi: 10.1111/j.1469-8137.2012.04102.x PubMedCrossRefGoogle Scholar
  20. Hemming D et al (2005) Pan-European δ13C values of air and organic matter from forest ecosystems. Glob Chang Biol 11:1065–1093CrossRefGoogle Scholar
  21. Hymus G, Maseyk K, Valentini R, Yakir D (2005) Large daily variation in 13C enrichment of leaf respired CO2 in two Quercus forest canopies. New Phytol 167:377–384PubMedCrossRefGoogle Scholar
  22. Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Ac 13:322–334CrossRefGoogle Scholar
  23. Klumpp K, Schaufele R, Lotscher M, Lattanzi F, Feneis W, Schnyder H (2005) C-isotope composition of CO2 respired by shoots and roots: fractionation during dark respiration? Plant Cell Environ 28:241–250CrossRefGoogle Scholar
  24. Kodama N et al (2008) Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: from newly assimilated organic carbon to respired carbon dioxide. Oecologia 156:737–750PubMedCrossRefGoogle Scholar
  25. Kuptz D, Matyssek R, Grams TEE (2011) Seasonal dynamics in the stable carbon isotope composition (δ13C) from non-leafy branch, trunk and coarse root CO2 efflux of adult deciduous (Fagus sylvatica) and evergreen (Picea abies) trees. Plant Cell Environ 34:363–373PubMedCrossRefGoogle Scholar
  26. Marron N, Plain C, Longdoz B, Epron D (2009) Seasonal and daily time course of the 13C composition in soil CO2 efflux recorded with a tunable diode laser spectrophotometer (TDLS). Plant Soil 318:137–151CrossRefGoogle Scholar
  27. Maunoury F, Berveiller D, Lelarge C, Pontailler J, Vanbostal L, Damesin C (2007) Seasonal, daily and diurnal variations in the stable carbon isotope composition of carbon dioxide respired by tree trunks in a deciduous oak forest. Oecologia 151:268–279PubMedCrossRefGoogle Scholar
  28. Mc Dowell N, Bowling DR, Bond BJ, Irvine J, Law BE, Anthoni P, Ehleringer JR (2004) Response of the carbon isotopic content of ecosystem, leaf, and soil respiration to meteorological and physiological driving factors in a Pinus ponderosa ecosystem. Global biogeochem cy 18:1–12Google Scholar
  29. Mortazavi B, Chanton J, Prater J, Oishi A, Oren R, Katul G (2005) Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions. Oecologia 142:57–69PubMedCrossRefGoogle Scholar
  30. Ngao J, Epron D, Brechet C, Granier A (2005) Estimating the contribution of leaf litter decomposition to soil CO2 efflux in a beech forest using 13C-depleted litter. Glob Chang Biol 11:1768–1776CrossRefGoogle Scholar
  31. Ngao J, Longdoz B, Perrin D, Vincent G, Epron D, Le Dantec V, Soudani K, Aubinet M, Willm F, Granier A (2006) Cross-calibration functions for soil CO2 efflux measurment systems. Ann For Sci 63:477–484CrossRefGoogle Scholar
  32. Prater J, Mortazavi B, Chanton J (2005) Diurnal variation of the δ13C of pine needle respired CO2 evolved in darkness. Plant Cell Environ 29:202–211CrossRefGoogle Scholar
  33. Tcherkez G, Nogues S, Bleton J, Cornic G, Badeck F, Ghashghaie J (2003) Metabolic origin of carbon isotope composition of leaf dark-respired co2 in french bean. Plant Physiol 131:237–244PubMedCrossRefGoogle Scholar
  34. Ubierna N, Marshall JD, Cernusak LA (2009) A new method to measure carbon isotope composition of CO2 respired by trees: stem CO2 equilibration. Funct Ecol 23:1050–1058CrossRefGoogle Scholar
  35. Werner C, Hasenbein N, Maia R, Beyschlag W, Maguas C (2007) Evaluating high time-resolved changes in carbon isotope ratio of respired CO2 by a rapid in-tube incubation technique. Rapid Commun Mass Spectrom 21:1352–1360PubMedCrossRefGoogle Scholar
  36. Zobitz J, Burns S, Ogee J, Reichstein M, Bowling D (2007) Partitioning net ecosystem exchange of CO2: a comparison of a Bayesian/isotope approach to environmental regression methods. J Geophys Res 112:G03013CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2012

Authors and Affiliations

  • Florence Maunoury-Danger
    • 1
    • 7
    Email author
  • Nicolas Chemidlin Prevost Boure
    • 1
  • Jérôme Ngao
    • 3
    • 8
  • Daniel Berveiller
    • 2
  • Claude Brechet
    • 3
  • Eric Dufrene
    • 2
  • Daniel Epron
    • 4
  • Jean-Christophe Lata
    • 5
  • Bernard Longdoz
    • 3
  • Caroline Lelarge-Trouverie
    • 6
  • Jean-Yves Pontailler
    • 2
  • Kamel Soudani
    • 1
  • Claire Damesin
    • 1
  1. 1.AgroPariTech, Ecologie Systématique et Evolution, UMR 8079, CNRSUniv. Paris-SudOrsayFrance
  2. 2.CNRS, UMR 8079, Ecologie Systématique et EvolutionOrsayFrance
  3. 3.INRA, Écologie et Écophysiologie Forestières, UMR 1137ChampenouxFrance
  4. 4.Écologie et Écophysiologie Forestières, UMR 1137Université de LorraineVandoeuvreFrance
  5. 5.UMR 7618, Ecole Normale SupérieureUPMC-BioemcoParis Cedex 05France
  6. 6.UMR 8618, Institut de Biotechnologie des PlantesUniv. Paris-SudOrsayFrance
  7. 7.Université de Lorraine, LIEBE, CNRS, UMR 7146MetzFrance
  8. 8.INRA, Clermont Université Blaise Pascal, UMR 547 PIAFClermont-FerrandFrance

Personalised recommendations