Annals of Forest Science

, Volume 70, Issue 2, pp 195–207 | Cite as

Storm damage of Douglas-fir unexpectedly high compared to Norway spruce

  • Axel Albrecht
  • Ulrich Kohnle
  • Marc Hanewinkel
  • Jürgen Bauhus
Original Paper



Since storm damage has a large impact on forest management in Central Europe, we investigated the main storm risk factors for two important conifer species, Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco) and Norway spruce (Picea abies [L.] Karst.).


We compared general storm damage levels of Douglas-fir and Norway spruce, the latter being known to have high storm risk among European tree species.


Generalized linear mixed models and boosted regression trees were applied to recorded storm damage of individual trees from long-term experimental plots in southwest Germany. This included two major winter storm events in 1990 and 1999. Over 40 candidate predictors were tested for their explanatory power for storm damage and summarized into predictor categories for further interpretation.


The two most important categories associated with storm damage were timber removals and topographic or site information, explaining between 18 and 54 % of storm damage risk, respectively. Remarkably, general damage levels were not different between Douglas-fir and Norway spruce.


Under current forest management approaches, Douglas-fir may be considered a species with high storm risk in Central Europe, comparable to that of Norway spruce.


Storm damage Risk Windthrow Douglas-fir Norway spruce Southwest Germany Empirical modeling 



The authors would like to thank Dr. Edgar Kublin for statistical consulting and Ms. Robin Hillestad for native English language reviewing of this publication.


This study was partly funded by the German Federal Ministry of Education and Research under funding code 0330622 and by the Forest Research Institute Baden-Württemberg. The authors are responsible for the contents of this publication.


  1. Albrecht A (2009) Sturmschadensanalysen langfristiger waldwachstumskundlicher Versuchsflächendaten in Baden-Württemberg. Dissertation, University of FreiburgGoogle Scholar
  2. BMVEL (2006) Results from the National Forest Inventory 2001/2. German Federal Ministry of Food, Agriculture and Consumer Protection. Available at,0/76.html. Accessed 7 September 2012
  3. Bouchon J (1987) État de la recherche relative aux dégâts forestiers dus aux tempêtes. Rev For Fr 39:301–312CrossRefGoogle Scholar
  4. Colin F, Vinkler I, Riou-Nivert P, Renaud J-P, Hervé J-C, Bock J, Piton B (2009) Facteurs de risque de chablis dans les peuplements forestiers: les leçons tirées des tempêtes de 1999. In: Birot Y, Landmann G, Bonhême I (eds) La forêt face aux tempêtes. Quae Editions, Versailles, pp 177–228Google Scholar
  5. Cremer KW, Borough CJ, McKinnel FH, Carter PR (1982) Effects of stocking and thinning on wind damage in plantations. N Z J For Sci 12:244–268Google Scholar
  6. Cucchi V, Meredieu C, Stokes A, Coligny FD, Suarez J, Gardiner BA (2005) Modelling the windthrow risk for simulated forest stands of maritime pine (Pinus pinaster Ait.). For Ecol Manag 213:184–196CrossRefGoogle Scholar
  7. Dhôte J-F (2005) Implication of forest diversity in resistance to strong winds. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function. Springer, Berlin, pp 291–307. doi: 210.1007/1003-1540-26599-26596_26514 CrossRefGoogle Scholar
  8. Dobbertin M (2002) Influence of stand structure and site factors on wind damage comparing the storms Vivian and Lothar. For Snow Landsc Res 77:187–205Google Scholar
  9. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813PubMedCrossRefGoogle Scholar
  10. Enke W, Deutschländer T, Schneider F, Küchler W (2005) Results of five regional climate studies applying a weather pattern based downscaling method to ECHAM4 climate simulation. Meteorol Z 14:247–257CrossRefGoogle Scholar
  11. Friedman JH, Meulman JJ (2003) Multiple additive regression trees with application in epidemiology. Stat Med 22:1365–1381PubMedCrossRefGoogle Scholar
  12. Groth O (1927) Die Wurzelbildung der Douglasie und ihr Einfluß auf die Sturm- und Schneefestigkeit dieser Holzart. Offprint Allg For Jagdztg 103 (in German)Google Scholar
  13. Hanewinkel M (2005) Neural networks for assessing the risk of windthrow on the forest division level: a case study in southwest Germany. Eur J For Res 124:243–249CrossRefGoogle Scholar
  14. Heidingsfelder A, Knoke T (2004) Douglasie versus Fichte. J.D. Sauerländer’s Verlag, Frankfurt am Main (in German)Google Scholar
  15. Heneka P, Hofherr T, Ruck B, Kottmeier C (2006) Winter storm risk of residential structures—model development and application to the German state of Baden-Württemberg. Nat Hazards Earth Syst Sci 6:721–733CrossRefGoogle Scholar
  16. Hermann RK (2005) Wurzelstudien an Douglasie—ein Literaturüberblick. In: Dong PH (ed) Zum Anbau und Wachstum der Douglasie. Mitt Forsch Anst Waldökologie Forstwirtsch Rheinl-Pfalz 55:135–164 (in German)Google Scholar
  17. Johnson M, Kohler G, Omdal D, Kroll A R, Ripley K, Hostetler B, Mathison R, Nelson A (2010) Forest health highlights in Washington 2009. DNR WA, Forest Health Program. Available at Accessed 7 September 2012
  18. König A (1995) Sturmgefährdung von Beständen im Altersklassenwald. Dissertation, Technical University of Munich (in German)Google Scholar
  19. Lanquaye-Opoku N, Mitchell SJ (2005) Portability of stand-level empirical windthrow risk models. For Ecol Manag 216:134–148CrossRefGoogle Scholar
  20. Leckebusch G, Koffi B, Ulbrich U, Pinto JG, Spangehl T, Zacharias S (2006) Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Clim Res 31:59–74CrossRefGoogle Scholar
  21. Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models, 2nd edn. SAS Institute Inc., CaryGoogle Scholar
  22. Lohmander P, Helles F (1987) Windthrow probability as a function of stand characteristics and shelter. Scand J For Res 2:227–238CrossRefGoogle Scholar
  23. Maccurrach RS (1991) Spacing: an option for reducing storm damage. Scott For 45:285–297Google Scholar
  24. Mason WL, Quine CP (1995) Silvicultural possibilities for increasing structural diversity in British spruce forests: the case of Kielder Forest. For Ecol Manag 79:13–28CrossRefGoogle Scholar
  25. Mayer P, Brang P, Dobbertin M, Hallenbarter D, Renaud J-P, Walthert L, Zimmermann S (2005) Forest storm damage is more frequent on acidic soils. Ann For Sci 62:303–311CrossRefGoogle Scholar
  26. Mayhead GJ (1973) Some drag coefficients for British forest trees derived from wind tunnel studies. Agric Meteorol 12:123–130CrossRefGoogle Scholar
  27. McComb WC, Spies TA, Emmingham WH (1993) Douglas-fir forests—managing for timber and mature-forest habitat. J For 91:31–42Google Scholar
  28. McMinn RG (1963) Characteristics of Douglas-fir root systems. Can J Bot 41:105–122CrossRefGoogle Scholar
  29. Nicoll BC, Gardiner BA, Peace AJ (2008) Improvements in anchorage provided by the acclimation of forest trees to wind stress. For 81:389–398Google Scholar
  30. Nicoll BC, Gardiner BA, Rayner B, Peace AJ (2006) Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Can J For Res 36:1871–1883CrossRefGoogle Scholar
  31. Quine C (1995) Assessing the risk of wind damage to forests: practice and pitfalls. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 379–403CrossRefGoogle Scholar
  32. Rich RL, Frelich LE, Reich PB (2007) Wind-throw mortality in the southern boreal forest: effects of species, diameter and stand age. J Ecol 95:1261–1273CrossRefGoogle Scholar
  33. Ridgeway G (2006) Generalized boosted regression models. Documentation on the R package “gbm”. Available at Accessed 7 September 2012
  34. Riou-Nivert P (2003) Tempêtes et dégâts aux forêts : évolution sur le XXe siècle. Programme International Géosphère Biosphère–Programme Mondial de recherches sur le climat (PIGB-PMRC) 15:46–49Google Scholar
  35. Rottmann M (1986) Wind- und Sturmschäden im Wald. J.D. Sauerländer’s Verlag, Frankfurt am Main (in German)Google Scholar
  36. Rudnicki M, Mitchell SJ, Novak MD (2004) Wind tunnel measurements of crown streamlining and drag relationships for three conifer species. Can J For Res 34:666–676CrossRefGoogle Scholar
  37. Schmid-Haas P, Bachofen H (1991) Die Sturmgefährdung von Einzelbäumen und Beständen. Schweiz Z Forstwes 142:477–504 (in German)Google Scholar
  38. Schmidt M, Hanewinkel M, Kändler G, Kublin E, Kohnle U (2010) An inventory-based approach for modeling single tree storm damage—experiences with the winter storm 1999 in southwestern Germany. Can J For Res 40:1636–1652CrossRefGoogle Scholar
  39. Schütz J-P, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur J For Res 125:291–302CrossRefGoogle Scholar
  40. Spiecker H, Mielikäinen K, Koehl M, Skovsgaard JP (eds) (1996) Growth trends in European forests: studies from 12 countries. Springer, BerlinGoogle Scholar
  41. Stock M (ed) (2005) Klimawandel—Auswirkungen, Risiken, Anpassung. Potsdam Institute of Climate Impact Research, PIK Report (99) (in German)Google Scholar
  42. Studholme WP (1995) The experience of and management strategy adopted by the Selwyn Plantation Board, New Zealand. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 468–476CrossRefGoogle Scholar
  43. Telewski FW (1995) Wind-induced physiological and developmental responses in trees. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 237–263CrossRefGoogle Scholar
  44. The SAS Institute Inc (2006) The GLIMMIX procedure—June 2006. Available at Accessed 7 September 2012
  45. Von Teuffel K, Heinrich B, Baumgarten M (2004) Present distribution of secondary Norway spruce in Europe. In: Spiecker H, Hansen J, Klimo E, Skovsgaard JP, Sterba H, Von Teuffel K (eds) Norway spruce conversion—options and consequences. Brill, LeidenGoogle Scholar
  46. Vollsinger S, Mitchell SJ, Byrne KE, Novak MD, Rudnicki M (2005) Wind tunnel measurements of crown streamlining and drag relationships for several hardwood species. Can J For Res 35:1238–1249CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2012

Authors and Affiliations

  • Axel Albrecht
    • 1
  • Ulrich Kohnle
    • 1
  • Marc Hanewinkel
    • 2
  • Jürgen Bauhus
    • 3
  1. 1.Department of Forest GrowthForest Research Institute Baden-WuerttembergFreiburgGermany
  2. 2.Swiss Federal Institute for Forest, Snow and Landscape ResearchZürichSwitzerland
  3. 3.Institute of SilvicultureUniversity of FreiburgFreiburg im BreisgauGermany

Personalised recommendations