Annals of Forest Science

, Volume 70, Issue 2, pp 143–149 | Cite as

Effect of nutrient removal on radial growth of Pinus sylvestris and Quercus petraea in Southern Germany

  • Christian ZangEmail author
  • Andreas Rothe
Original Paper



The rising demand of energy wood for heating purposes in Germany leads to concerns regarding the overexploitation of forests. A major aspect is the impact of whole-tree harvesting on long-term productivity of forest soils.


This study aimed to analyze the effects of nutrient removal on productivity using the historically prevalent practice of litter raking. Since there is a lack of controlled whole-tree harvesting experiments in Germany, we used litter raking as a surrogate management practice entailing the removal of nutrients from forest stands.


We used three sites with documented litter raking to analyze the effects of nutrient removal on productivity using dendroecological methods: two recent litter removal experiments in two Scots pine stands (Siegenburg and Burglengenfeld) and one oak stand (Eichhall) with documented historic litter raking. Basal area increment (BAI) and tree-ring characteristics were compared between periods with litter raking and the preceding periods for both treatment and control plots.


For the two Scots pine sites with a relatively short litter raking period, no effects of litter raking on BAI could be ascribed to nutrient removal. On the oak site with a longer history of litter utilization, the loss in BAI due to litter raking amounts to 22 % during the period with active raking and to still 17 % in the recovery period.


These results contribute to the still very limited understanding about the impact of whole-tree harvesting on forest productivity in Germany by laying down an upper limit of possible effects due to nutrient removal, as nutrient loss by litter raking tends to be higher than nutrient loss by whole-tree harvesting.


Nutrient removal Productivity Pine Oak Tree-rings 



We thank Axel Göttlein for his recommendations concerning the experimental sites and the former students Alexandra Schade, Michael Frank, Philipp Wolf, and Michelangelo Olleck for their strong commitment performing the field work. We also thank Erwin Dreyer and three anonymous reviewers for their comments that improved the paper. C.Z. has been funded by the Institute for Advanced Study of the Technische Universität München.


  1. Bergh J, Linder S, Lundmark T, Elfving B (1999) The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. For Ecol Manag 119:51–62Google Scholar
  2. Bigler C, Bugmann H (2004) Assessing the performance of theoretical and empirical tree mortality models using tree-ring series of Norway spruce. Ecol Mod 174:225–239CrossRefGoogle Scholar
  3. Bigler C, Bräker O, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343CrossRefGoogle Scholar
  4. Biondi F, Qeadan F (2008) A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Bull 64:81–96CrossRefGoogle Scholar
  5. Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85:730–740CrossRefGoogle Scholar
  6. Deutsches Pelletinstitut DEPI (2010) Gesamtbestand an Pelletheizungen in Deutschland. 7 Nov 2011
  7. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
  8. Ebermayer E (1876) Die gesamte Lehre von der Waldstreu. Springer, BerlinGoogle Scholar
  9. Emmett BA (2007) Nitrogen saturation of terrestrial ecosystems: some recent findings and their implications for our conceptual framework. Water, Air, & Soil Poll 7:99–109CrossRefGoogle Scholar
  10. Englisch M, Reiter R (2009) Standörtliche Nährstoff-Nachhaltigkeit bei der Nutzung von Wald-Biomasse. BFW-Praxisinformationen 18:13–15Google Scholar
  11. Fiedler HJ, Fiedler E, Hoffmann F, Hohne H, Sauer G, Thomasius H (1962) Auswertung eines Streunutzungsversuches von H. VATER aus dem Jahre 1912. Arch f Forstw 11:1Google Scholar
  12. German Federal Ministry of Food, Agriculture and Consumer Protection (2010) Statistisches Jahrbuch 2010, Kapitel G. Forstwirtschaft. 418. Holzeinschlag nach Holzarten und Verwendung.Google Scholar
  13. Helmisaari HS (1992) Nutrient retranslocation within the foliage of Pinus sylvestris. Tree Phys 10:45–58CrossRefGoogle Scholar
  14. Helmisaari HS, Hanssen KH, Jacobson S, Kukkola M, Luiro J, Saarsalmi A, Tamminen P, Tveite B (2011) Logging residue removal after thinning in Nordic boreal forests: long-term impact on tree growth. For Ecol Manag 261:1919–1927CrossRefGoogle Scholar
  15. Hofmeister J, Oulehle F, Krám P, Hruška J (2008) Loss of nutrients due to litter raking compared to the effect of acidic deposition in two spruce stands, Czech Republic. Biogeochemistry 88:139–151CrossRefGoogle Scholar
  16. Holmes R (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  17. Jacobsen C, Rademacher P, Meesenburg H, Meiwes KJ (2003) Gehalte chemischer Elemente in Baumkompartimenten—Literaturstudie und Datensammlung. Berichte des Forschungszentrums Waldökosysteme, Reihe B 69.Google Scholar
  18. Jacobson S, Kukkola M, Mälkönen E, Tveite B (2000) Impact of whole-tree harvesting and compensatory fertilization on growth of coniferous thinning stands. For Ecol Manag 129:41–51CrossRefGoogle Scholar
  19. Juknys R, Stravinskiene V, Vencloviene J (2002) Tree-ring analysis for the assessment of anthropogenic changes and trends. Environ Monit Assess 77:81–97PubMedCrossRefGoogle Scholar
  20. Kohler M, Sohn J, Nägele G, Bauhus J (2010) Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? Eur J For Res 129:1109–1118CrossRefGoogle Scholar
  21. Kreutzer K (1972) Über den Einfluß der Streunutzung auf den Stickstoffhaushalt von Kiefernbeständen (Pinus silvestris L.). Forstwissenschaftliches Centralblatt 91:263–270CrossRefGoogle Scholar
  22. Kreutzer K (1979) Ökologische Fragen zur Vollbaumernte. Forstwissenschaftliches Centralblatt 98:298–308CrossRefGoogle Scholar
  23. Küsters E (2002) Wachstumtrends der Kiefer in Bayern. PhD-Thesis, Technische Universität München, Munich, Germany.Google Scholar
  24. Meiwes KJ, Asche N, Block J, Kallweit R, Kölling C, Raben G, von Wilpert K (2008) Potenziale und Restriktionen der Biomassenutzung im Wald. AFZ-Der Wald 63:598–604Google Scholar
  25. Nohrstedt HO (2001) Response of coniferous forest ecosystems on mineral soils to nutrient additions: a review of Swedish experiences. Scand J For Res 16:555–573CrossRefGoogle Scholar
  26. Piovesan G, Biondi F, Filippo A, Alessandrini A, Maugeri M (2008) Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Global Change Biol 14:1265–1281CrossRefGoogle Scholar
  27. Proe M, Cameron A, Dutch J, Christodoulou X (1996) The effect of whole-tree harvesting on the growth of second rotation Sitka spruce. Forestry 69:389–401CrossRefGoogle Scholar
  28. Rinn F (2003) TSAP-Win—time series analysis and presentation for dendrochronology and related applications. Germany, HeidelbergGoogle Scholar
  29. Sayer EJ (2006) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31PubMedCrossRefGoogle Scholar
  30. Sterba H (1988) Increment losses by full-tree harvesting in Norway spruce (Picea abies). For Ecol Manag 24:283–292CrossRefGoogle Scholar
  31. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New YorkCrossRefGoogle Scholar
  32. Zang C, Rothe A, Weis W, Pretzsch H (2011) Zur Baumarteneignung bei Klimawandel: Ableitung der Trockenstress-Anfälligkeit wichtiger Waldbaumarten aus Jahrringbreiten. Allgemeine Forst- und Jagdzeitung 182:98–112Google Scholar

Copyright information

© INRA / Springer-Verlag France 2012

Authors and Affiliations

  1. 1.Chair of EcoclimatologyTechnische Universität MünchenFreisingGermany
  2. 2.Institute of Advanced StudiesTechnische Universität MünchenGarchingGermany
  3. 3.Faculty of ForestryUniversity of Applied Sciences Weihenstephan-TriesdorfFreisingGermany

Personalised recommendations