Annals of Forest Science

, Volume 70, Issue 1, pp 41–47 | Cite as

Relationships between climate and radial growth in black pine (Pinus nigra Arnold ssp. salzmannii (Dunal) Franco) from the south of France

  • Thomas Amodei
  • Frédéric GuibalEmail author
  • Bruno Fady
Original Paper


• Context

The Salzmann pine (Pinus nigra ssp. salzmannii) is an endemic subspecies of black pine native to the Western Mediterranean basin. In Spain, Salzmann pine covers extensive areas (approx. 350 000 ha), while in France where few scattered populations subsist, its distribution area is estimated at approx. 3 000 ha.

• Method

We used a dendroecological approach to understand the impact of climate fluctuations on Salzmann pine from France. Spatial and temporal variability of radial growth response was compared in three ecologically different populations (Conflent, Gorges du Tarn, Saint-Guilhem-le-Désert).

• Results

The Conflent population showed a strong sensitivity to spring precipitation deficits (March to June), while at Gorges du Tarn and Saint-Guilhem sites, autumn (October) of the previous year and winter (February) temperatures explained more variance than precipitations and were, respectively, negatively and positively correlated to radial growth.

• Conclusion

Although covering a limited distribution range in France, Salzmann pine demonstrated large differences in radial growth response to climate and soil variations.


Pinus nigra ssp. salzmannii Tree ring Climate Soil Response function Dendroecology 



We gratefully acknowledge Norbert Turion, Olivier Gilg, and Franck Rei (INRA UEFM, Avignon) for the field work and the “Programme global de conservation des populations françaises de pin de Salzmann” funded by the French National Forest Service (ONF) for the financial support. We also thank Mélanie Saulnier and Élodie Brisset (UMR IMBE, Aix-Marseille University) for the technical advice.


  1. Andreu L, Gutiérez E, Macias M, Ribas M, Bosch O, Camarero J (2007) Climate increases regional tree-growth variability in Iberian pine forests. Glob Chang Biol 13:804–815Google Scholar
  2. Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311CrossRefGoogle Scholar
  3. Bogino S, Bravo F (2008) Growth response of Pinus pinaster Ait. to climatic variables in central Spanish forests. Ann For Sci 65:506CrossRefGoogle Scholar
  4. Calas M (1900) Le Pin laricio de Salzmann. Imprimerie nationale, Paris, p 50Google Scholar
  5. Campelo F, Nabais C, Freitas H, Gutiérez E (2007) Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann For Sci 64:229–238CrossRefGoogle Scholar
  6. Campelo F, Nabais C, Garcia-González I, Cherubini P, Gutiérez E, Freitas H (2009) Dendrochronology of Quercus ilex L. and its potential use for climate reconstruction in the Mediterranean region. Can J For Res 39:2486–2493CrossRefGoogle Scholar
  7. Costa M, Morla C, Sainz H (1997) Los bosques ibéricos: una interpretación geobotánica. (ed). Planeta, Barcelona. pp 572Google Scholar
  8. Dereuddre J, Gazeau C (1992) Les végétaux et les très basses températures. In: Côme D (ed) Les végétaux et le froid. Hermann, Paris, pp 107–175Google Scholar
  9. Fady B, Brahic P, Cambon D, Gilg O, Rei F, Roig A, Royer J, Thévenet J, Turion N (2010) Valoriser et conserver le Pin de Salzmann en France. For Méditerr 31:3–14Google Scholar
  10. Fritts HC (1976) Tree rings and climate. Academic, London, p 567Google Scholar
  11. Génova M, Fernández A (1999) Tree rings and climate of Pinus nigra subsp. salzmannii in central Spain. Dendrochronologia 16–17:75–85Google Scholar
  12. Génova M, Martinez-Morillas D (2002) Estudio dendroecologico de Pinus nigra en Checa (Guadalajara). Ecologia 16:83–95Google Scholar
  13. Guiot J (1991) Research report, the bootstrapped response function. Tree-Ring Bull 51:39–41Google Scholar
  14. Guiot J, Gœury C (1996) PPPBASE, a software for statistical analysis of paleoecological and paleoclimatological data. Dendrochronologia 14:295–300Google Scholar
  15. Guiot J, Nicault A (2010) Méthodes de dendroclimatologie à l’échelle continentales: fonctions de réponse et fonctions de transfert. In: Payette S, Filion L (eds) La dendroécologie: principes, méthodes et applications. Presses de l’Université de Laval, Laval, pp 229–253Google Scholar
  16. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  17. Houghton J (2011) Le réchauffement climatique: état des lieux complet. De Boeck, Bruxelle, p 495Google Scholar
  18. Lebourgeois F (2000) Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France. Ann For Sci 57:155–164CrossRefGoogle Scholar
  19. Linares JC, Tiscar PA (2010) Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiol 30:795–806PubMedCrossRefGoogle Scholar
  20. Martin-Benito D, Del Rio M, Cañellas I (2010) Black pine (Pinus nigra Arn.) growth divergence along a latitudinal gradient in Western Mediterranean Mountains. Ann For Sci 67:401CrossRefGoogle Scholar
  21. Mitchell TD, Hulme M, New M (2002) Climate data for political areas. Area 34:109–112CrossRefGoogle Scholar
  22. Quézel P, Barbéro M (1988) Signification phytoécologique et phytosociologique des peuplements naturels de Pin de Salzmann en France. Ecol Mediterr 14:41–63Google Scholar
  23. Vernet J-L (2006) History of the Pinus sylvestris and Pinus nigra ssp. salzmanni forest in the sub-Mediterranean mountains (Grands Causses, Saint-Guilhem-le-Desert, southern Massif Central, France) based on charcoal from limestone and dolomitic deposits. Veget Hist Archaeobot 16:23–42CrossRefGoogle Scholar
  24. Vernet JL, Meter A, Zéraïa L (2005) Premières datations de feux holocènes dans les monts de Saint-Guilhem-le-Désert (Hérault, France), contribution à l’histoire de la forêt relique de Pinus nigra Arnold ssp. salzmanni (Dun.) Franco. Géosciences 337:533–537CrossRefGoogle Scholar
  25. Wieser G (1997) Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiol 17:473–477PubMedCrossRefGoogle Scholar

Copyright information

© INRA / Springer-Verlag France 2012

Authors and Affiliations

  1. 1.Institut Méditerranéen de Biodiversité et d’Ecologie (IMBE), UMR CNRS 6116Aix-Marseille UniversitéAix en Provence Cedex 4France
  2. 2.INRA, UR629Ecologie des Forêts Méditerranéennes(URFM)Avignon Cedex 9France

Personalised recommendations