Annals of Forest Science

, Volume 69, Issue 6, pp 713–721 | Cite as

Retrospective analysis of tree architecture in silver fir (Abies alba Mill.): ontogenetic trends and responses to environmental variability

  • Olivier Taugourdeau
  • Jean Dauzat
  • Sébastien Griffon
  • Sylvie Sabatier
  • Yves Caraglio
  • Daniel Barthélémy
Original Paper

Abstract

Context

Understanding the effects of exogenous factors on tree development is of major importance in the current context of global change. Assessing the structure development of trees is difficult given that they are large and complex organisms with lifespan of several decades.

Aims

We used a retrospective analysis to derive the ontogenetic trends in silver fir development and assess the effects of climate or light environment on tree architecture.

Methods

Thanks to the identification of relevant growth markers (bud cataphylls and pseudo-whorl branches), a retrospective analysis allowed to record annual shoot extension and to date them on silver firs of various sizes under different environmental conditions.

Results

The length of successive annual shoots located on different axes clearly show gradual trends related to the physiological age of meristems. Within- and between-tree variations are noted due to the plasticity of development and growth induced by light environment and climate.

Conclusion

Retrospective analysis is an efficient method for getting information on the history of trees architecture and subsequently to relate it to environmental factors.

Keywords

Morphological markers A posteriori approach Tree development Phenotypic plasticity Morphogenetic gradient 

Notes

Acknowledgements

The authors are grateful to Pierre Cretin-Maitenaz, Michäel Guéroult and URFM technical team for their help in collecting field data, to MéteoFrance for providing meteorological data, to François de Coligny, the handling editor and an anonymous reviewer for their helpful comments that led to an improvement in the presentation of this paper.

Funding

OT was funded by a French Ministry of Research PhD grant.

References

  1. Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407PubMedCrossRefGoogle Scholar
  2. Barthélémy D, Caraglio Y, Sabatier S (2010) Crown architecture of valuable broadleaved species. In: Spiecker H, Hein S, Makkonen-Spiecker K, Thies M (eds) Valuable broadleaved forests in Europe. Leyde, Brill, pp 87–101Google Scholar
  3. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449PubMedCrossRefGoogle Scholar
  4. Bontemps J, Herve J, Dhote J (2009) Long-term changes in forest productivity: a consistent assessment in even-aged stands. For Sci 55:549–564Google Scholar
  5. Cailleret M (2011) Causes fonctionnelles du dépérissement et de la mortalité du sapin pectiné en Provence, PhD thesis. University of Aix-Marseille III, Avignon, FranceGoogle Scholar
  6. Cailleret M, Davi H (2010) Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees 25:265–276Google Scholar
  7. Caraglio Y, Rigolot E, Pimont F (2007) Pinus halepensis Mill. Architectural analysis for fuel modelling. Proceedings of the international workshop MEDPINE. pp 43–59Google Scholar
  8. Charles-Dominique T, Mangenet T, Rey H et al (2009) Architectural analysis of root system of sexually vs. vegetatively propagated yam (Dioscorea rotundata Poir.), a tuber monocot. Plant Soil 317:61–77CrossRefGoogle Scholar
  9. Chaubert-Pereira F, Caraglio Y, Lavergne C, Guédon Y (2009) Identifying ontogenetic, environmental and individual components of forest tree growth. Ann Bot 104:883–896PubMedCrossRefGoogle Scholar
  10. Cienciala E, Cerny M, Tatarinov F et al (2006) Biomass functions applicable to Scots pine. Trees 20:483–495CrossRefGoogle Scholar
  11. De Kroon H, Visser EJW, Huber H et al (2009) A modular concept of plant foraging behaviour: the interplay between local responses and systemic control. Plant Cell Environ 32:704–712PubMedCrossRefGoogle Scholar
  12. Delagrange S, Montpied P, Dreyer E et al (2006) Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species. New Phytol 172:293–304PubMedCrossRefGoogle Scholar
  13. Drobyshev I, Overgaard R, Saygin I et al (2010) Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. For Ecol Manag 259:2160–2171CrossRefGoogle Scholar
  14. Dulamsuren C, Hauck M, Leuschner HH, Leuschner C (2011) Climate response of tree-ring width in Larix sibirica growing in the drought-stressed forest-steppe ecotone of northern Mongolia. Ann For Sci 68:275–282CrossRefGoogle Scholar
  15. Dyer M, Bailey R (1987) A test of 6 methods for estimating true heights from stem analysis data. For Sci 33:3–13Google Scholar
  16. Edelin C (1977) Images de l’architecture des conifères, PhD thesis. Université de Montpellier II, MontpellierGoogle Scholar
  17. Everett RG (2008) Dendrochronology-based fire history of mixed-conifer forests in the San Jacinto Mountains, California. For Ecol Manag 256:1805–1814CrossRefGoogle Scholar
  18. Frazer G, Canham C, Lertzman K (1999) Gap Light Analyzer (GLA): imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, user’s manual and program documentation. Simon Fraser University, BurnabyGoogle Scholar
  19. Godin C, Caraglio Y (1998) A multiscale model of plant topological structures. J Theor Biol 191:1–46PubMedCrossRefGoogle Scholar
  20. Hallé F, Martin R (1968) Etude de la croissance rythmique chez l’Hévéa (Hevea brasiliensis Müll.-Arg. Euphorbiacées-Crotonoïdées). Adansonia 8:475–503Google Scholar
  21. Heuret P, Guédon Y, Guérard N, Barthélémy D (2003) Analysing branching pattern in plantations of young red oak trees (Quercus rubra L., Fagaceae). Ann Bot 91:479–492PubMedCrossRefGoogle Scholar
  22. Heuret P, Meredieu C, Coudurier T et al (2006) Ontogenetic trends in the morphological features of main stem annual shoots of Pinus pinaster (Pinaceae). Am J Bot 93:1577–1587PubMedCrossRefGoogle Scholar
  23. Jourdan C, Rey H (1997) Architecture and development of the oil-palm (Elaeis guineensis Jacq) root system. Plant Soil 189:33–48CrossRefGoogle Scholar
  24. Kariuki M (2002) Height estimation in complete stem analysis using annual radial growth measurements. Forestry 75:63–74CrossRefGoogle Scholar
  25. Kawamura K (2010) A conceptual framework for the study of modular responses to local environmental heterogeneity within the plant crown and a review of related concepts. Ecol Res 25:733–744CrossRefGoogle Scholar
  26. Kelty M (2006) The role of species mixtures in plantation forestry. For Ecol Manag 233:195–204CrossRefGoogle Scholar
  27. Lehtonen A, Makipaa R, Heikkinen J et al (2004) Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manag 188:211–224CrossRefGoogle Scholar
  28. Linares JC, Camarero JJ, Carreira JA (2010) Competition modulates the adaptation capacity of forests to climatic stress: insights from recent growth decline and death in relict stands of the Mediterranean fir Abies pinsapo. J Ecology 98:592–603CrossRefGoogle Scholar
  29. Metsaranta J, Lieffers V (2009) Using dendrochronology to obtain annual data for modelling stand development: a supplement to permanent sample plots. Forestry 82:163–173CrossRefGoogle Scholar
  30. Pradal C, Dufour-Kowalski S, Boudon F et al (2008) OpenAlea: a visual programming and component-based software platform for plant modelling. Funct Plant Biol 35:751–760CrossRefGoogle Scholar
  31. Rey H, Godin C, Guédon Y (1997) Vers une représentation formelle des plantes. In: Bouchon J, De Reffye P, Barthélémy D (eds) Modélisation et simulation de l’architecture des végétaux, INRA éditions. INRA éditions, Paris, pp 139–174Google Scholar
  32. Richardson S, Smale M, Hurst J et al (2009) Large-tree growth and mortality rates in forests of the central North Island, New Zealand. New Zealand J Ecol 33:208–215Google Scholar
  33. Robakowski P, Wyka T, Samardakiewicz S, Kierzkowski D (2004) Growth, photosynthesis, and needle structure of silver fir (Abies alba Mill.) seedlings under different canopies. For Ecol Manag 201:211–227CrossRefGoogle Scholar
  34. Rutishauser E, Barthélémy D, Blanc L, Nicolini E (2011) Crown fragmentation assessment in tropical trees: method, insights and perspectives. For Ecol Manag 261:400–407CrossRefGoogle Scholar
  35. Sabatier S, Baradat Ph, Barthélémy D (2003) Intra- and interspecific variations of polycyclism in young trees of Cedrus atlantica (Endl.) Manetti ex. Carrière and Cedrus libani A. Rich (Pinaceae). Ann For Sci 60:19–29CrossRefGoogle Scholar
  36. Sato H, Itoh A, Kohyama T (2007) SEIB-DGVM: a new dynamic global vegetation model using a spatially explicit individual-based approach. Ecol Modell 200:279–307CrossRefGoogle Scholar
  37. Saulnier M, Edouard JL, Corona C, Guibal F (2011) Climate/growth relationships in a Pinus cembra high-elevation network in the Southern French Alps. Ann For Sci 68:189–200CrossRefGoogle Scholar
  38. Schenk HJ (1996) Modeling the effects of temperature on growth and persistence of tree species: a critical review of tree population models. Ecol Modell 92:1–32CrossRefGoogle Scholar
  39. Schweingruber FH (1996) Tree rings and environment: dendroecology. Paul Haupt AG Bern, SwitzerlandGoogle Scholar
  40. Stoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research—an overview. Nat Hazard Earth Sys 8:187–202CrossRefGoogle Scholar
  41. Taugourdeau O, Chaubert-Pereira F, Sabatier S, Guédon Y (2011) Deciphering the developmental plasticity of walnut saplings in relation to climatic factors and light environment. J Exp Bot 62:5283–5296PubMedCrossRefGoogle Scholar
  42. Thabeet A, Vennetier M, Gadbin-Henry C et al (2009) Response of Pinus sylvestris L. to recent climatic events in the French Mediterranean region. Trees 23:843–853CrossRefGoogle Scholar
  43. Yagi T (2009) Ontogenetic strategy shift in sapling architecture of Fagus crenata in the dense understorey vegetation of canopy gaps created by selective cutting. Can J For Res 39:1186–1196CrossRefGoogle Scholar
  44. Zalamea P, Stevenson P, Madrinan S et al (2008) Growth pattern and age determination for Cecropia sciadophylla (Urticaceae). Am J Bot 95:263–271PubMedCrossRefGoogle Scholar

Copyright information

© INRA / Springer-Verlag France 2012

Authors and Affiliations

  • Olivier Taugourdeau
    • 1
  • Jean Dauzat
    • 2
  • Sébastien Griffon
    • 2
  • Sylvie Sabatier
    • 2
  • Yves Caraglio
    • 2
  • Daniel Barthélémy
    • 3
    • 4
  1. 1.Université Montpellier 2UMR AMAPMontpellierFrance
  2. 2.CIRADUMR AMAPMontpellierFrance
  3. 3.INRAUMR AMAPMontpellierFrance
  4. 4.CIRADDIRBIOSMontpellierFrance

Personalised recommendations