Annals of Forest Science

, Volume 69, Issue 6, pp 681–691 | Cite as

Age trends of microfibril angle inheritance and their genetic and environmental correlations with growth, density and chemical properties in Eucalyptus urophylla S.T. Blake wood

  • Paulo Ricardo Gherardi Hein
  • Jean-Marc Bouvet
  • Eric Mandrou
  • Philippe Vigneron
  • Bruno Clair
  • Gilles Chaix
Original Paper

Abstract

Context

The genetic and environmental control of microfibril angle (MFA) and its genetic correlations with other wood and growth traits are still not well established in Eucalyptus sp.

Aims

To determine the narrow-sense heritability estimates (h2) of MFA, wood density (D), Klason lignin (KL) content, syringyl to guaiacyl (S/G) ratio and growth traits, their variation from pith to cambium and their genetic correlations.

Methods

Heritability and correlations were assessed in 340 control-pollinated progenies of 14-year-Eucalyptus urophylla S.T. Blake using near infrared spectroscopic models.

Results

Moderate to high heritability were found for MFA (h2 = 0.43), D (h2 = 0.61), S/G (h2 = 0.71) and LK (h2 = 0.76). The genetic control of D and MFA and the genetic and residual correlation between chemical and growth traits varied with age. The genetic correlation C × D was always strongly negative (r < −0.80) while the correlation D × MFA remained constant and positive in the juvenile wood (r = 0.7), before disappearing in the mature wood. These results could be explained by gene pleiotropic effect, low microfibril angle compensating for low wood density and fast growth or by linkage disequilibrium induced by sampling. Variations in MFA and KL in the mature wood were also genetically controlled.

Conclusions

These findings provide the opportunity for developing breeding strategies for pulpwood, fuelwood and sawntimber production in Eucalyptus sp.

Keywords

Variance components MFA Klason lignin Syringyl to guaiacyl ratio Factorial mating design Wood phenotyping NIR spectroscopy 

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Apiolaza LA (2009) Very early selection for solid wood quality: screening for early winners. Ann For Sci 66:601CrossRefGoogle Scholar
  3. Apiolaza LA, Raymond CA, Yeo BJ (2005) Genetic variation of physical and chemical wood properties of Eucalyptus globulus. Silvae Genet 54:4–5Google Scholar
  4. Baltunis BS, Wu HX, Powell MB (2007) Inheritance of density, microfibril angle, and modulus of elasticity in juvenile wood of Pinus radiata at two locations in Australia. Can J For Res 37:2164–2174CrossRefGoogle Scholar
  5. Bouvet JM, Bouillet JP, Vigneron P, Ognouabi N (1999) Genetic and environmental effects on growth and wood basic density with two Eucalyptus hybrids. In: 09/99 Connexion between silviculture and wood quality through modelling approaches and simulation softwares: modelling approaches and simulation softwares. La Londe-Les Maures, France, September, 5–12Google Scholar
  6. Bouvet JM, Vigneron P, Gouma R, Saya A (2003) Trends in variances and heritabilities with age for growth traits in Eucalyptus spacing experiments. Silvae Genet 52:3–4Google Scholar
  7. Bouvet JM, Saya A, Vigneron P (2009) Trends in additive, dominance and environmental effects with age for growth traits in Eucalyptus hybrid populations. Euphytica 165:35–54CrossRefGoogle Scholar
  8. Costa e Silva J, Borralho NMG, Araujo JA, Vaillancourt RE, Potts BM (2009) Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus. Tree Gen Genom 5:291–305CrossRefGoogle Scholar
  9. Costa e Silva J, Hardner C, Potts BM (2010) Genetic variation and parental performance under inbreeding for growth in Eucalyptus globulus. Ann For Sci. doi:10.1051/forest/2010019
  10. Evans R (1999) A variance approach to the X-ray diffractometric estimation of microfibril angle in wood. Appita J 52:283–289Google Scholar
  11. Evans R, Ilic J (2001) Rapid prediction of wood stiffness from microfibril angle and density. For Prod J 51:53–57Google Scholar
  12. Falconer DS (1993) Introduction to quantitative genetics. Longman, New YorkGoogle Scholar
  13. Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R (2005) ASReml user guide release 2.0, VSN international Ltd, Hemel Hempstead HP1 1ES, UKGoogle Scholar
  14. Gominho J, Rodrigues J, Almeida MH, Leal A, Cotterill PP, Pereira H (1997) Assessment of pulp yield and lignin content in a first-generation clonal testing of Eucalyptus globulus in Portugal, in: Proceedings of the IUFRO Conference on Silviculture and Improvement of Eucalypts, Salvador, Brazil, August 24–29, 1997, p. 84–89Google Scholar
  15. Greaves BL, Borralho NMG, Raymond CA, Evans R, Whiteman PH (1997) Age-age correlations and relationships between basic density and growth in Eucalyptus nitens. Silvae Genet 46:264–270Google Scholar
  16. Hamilton MG, Potts BM (2008) Eucalyptus nitens genetic parameters. N Z J For Sci 38:102–119Google Scholar
  17. Hamilton MG, Raymond CA, Harwood E, Potts BM (2009) Genetic variation in Eucalyptus nitens pulpwood and wood shrinkage traits. Tree Gen Genom 5:307–316CrossRefGoogle Scholar
  18. Hein PRG, Lima JT, Chaix G (2009) Robustness of models based on near infrared spectra to predict the basic density in Eucalyptus urophylla wood. J Near Infrared Spec 17:141–150CrossRefGoogle Scholar
  19. Hein PRG, Lima JT, Chaix G (2010a) Effects of sample preparation on NIR spectroscopic estimation of chemical properties of Eucalyptus urophylla S.T. Blake wood. Holzforschung 64:45–54CrossRefGoogle Scholar
  20. Hein PRG, Clair B, Brancheriau L, Chaix G (2010b) Predicting microfibril angle in Eucalyptus wood from different wood faces and surface qualities using near infrared spectra. J Near Infrared Spec 18:455–464CrossRefGoogle Scholar
  21. Kollmann FR, Coté WA (1968) Principles of wood science and technology. Springer, BerlinCrossRefGoogle Scholar
  22. Kube PD, Raymond CA, Banham PW (2001) Genetic parameters for diameter, basic density, cellulose content and fibre properties for Eucalyptus nitens. For Gen 8:285–294Google Scholar
  23. Lima JT, Breese MC, Cahalan CM (2004) Variation in microfibril angle in Eucalyptus clones. Holzforschung 58:160–166CrossRefGoogle Scholar
  24. Mode CJ, Robinson HF (1959) Pleiotropism and the genetic variance and covariance. Biometrics 15:518–537CrossRefGoogle Scholar
  25. Mrode RA, Thompson R (2005) Linear models for the prediction of animal breeding values, 2nd edn. CABI, Cambridge, MACrossRefGoogle Scholar
  26. Muneri A, Raymond CA (2000) Genetic parameters and genotype-by-environment interactions for basic density, pilodyn penetration and stem diameter in Eucalyptus globulus. For Gen 7:317–328Google Scholar
  27. Poke FS, Potts BM, Vaillancourt RE, Raymond CA (2006) Genetic parameters for lignin, extractives and decay in Eucalyptus globulus. Ann For Sci 63:813–821CrossRefGoogle Scholar
  28. Raymond CA (2002) Genetics of Eucalyptus wood properties. Ann For Sci 59:525–531CrossRefGoogle Scholar
  29. Raymond CA, MacDonald AC (1998) Where to shoot your pilodyn: within tree variation in basic density in plantation Eucalyptus globulus and E. nitens in Tasmania. New For 15:205–221CrossRefGoogle Scholar
  30. Raymond CA, Banham P, MacDonald AC (1998) Within tree variation and genetic control of basic density, fibre length and coarseness in Eucalyptus regnans in Tasmania. Appita J 41:299–305Google Scholar
  31. Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  32. Vigneron P, Giordanengo T, Ognouabi N, Gion JM, Chaix G, Baillères H (2004) Genetic components of wood quality traits in Eucalyptus urophylla × E. grandis full sib families. IUFRO Congress unit 2.08.03 “Eucalyptus in a Changing World”, Aveiro, Portugal, October, 11–15Google Scholar
  33. Villanueva B, Kennedy BW (1990) Effect of selection on genetic parameters of correlated traits. Theor Appl Gen 80:746–752CrossRefGoogle Scholar
  34. Wei X, Borralho NMG (1999) Objectives and selection criteria for pulp production of Eucalyptus urophylla plantation in south east China. For Gen 6:181–190Google Scholar
  35. Zobel BJ, Van Buijtenen JP (1989) Wood variation—its causes and control. Springer, BerlinGoogle Scholar
  36. Zubizarreta Gerendiain A, Peltola H, Pulkkinen P, Jaatinen R, Pappinen A, Kellomäki S (2007) Differences in growth and wood property traits in cloned Norway spruce (Picea abies). Can J For Res 37:2600–2611CrossRefGoogle Scholar

Copyright information

© INRA / Springer-Verlag France 2012

Authors and Affiliations

  • Paulo Ricardo Gherardi Hein
    • 1
    • 2
    • 3
  • Jean-Marc Bouvet
    • 4
  • Eric Mandrou
    • 4
    • 5
    • 6
  • Philippe Vigneron
    • 4
    • 7
  • Bruno Clair
    • 2
  • Gilles Chaix
    • 4
  1. 1.CIRAD, UPR Bois TropicauxF- MontpellierFrance
  2. 2.Laboratoire de Mécanique et Génie Civil (LMGC)CNRS, Université Montpellier 2MontpellierFrance
  3. 3.Universidade Federal de Lavras, DCF-UFLAMinas GeraisBrazil
  4. 4.CIRAD, UMR AGAPF- MontpellierFrance
  5. 5.Centre de recherche Vallourec, CEVAulnoye AymeriesFrance
  6. 6.INRA, UMR 1202 BIOGECOCestasFrance
  7. 7.CRDPIPointe NoireRepublic of Congo

Personalised recommendations