Advertisement

Annals of Forest Science

, Volume 69, Issue 5, pp 543–555 | Cite as

Dating branch growth units in a tropical tree using morphological and anatomical markers: the case of Parkia velutina Benoist (Mimosoïdeae)

  • Eric NicoliniEmail author
  • Jacques Beauchêne
  • Benjamin Leudet de la Vallée
  • Julien Ruelle
  • Thomas Mangenet
  • Patrick Heuret
Original Paper

Abstract

Context

In tropical areas, studies based on the retrospective analysis of tree development have focused principally on growth ring research. The interpretation of primary growth markers is overlooked although it opens perspectives to provide long time-series on tree-crown development.

Aims

This study focused on Parkia velutina, an emergent tree of neotropical rain forests. Our objectives were (1) to characterize the phenological cycle of this species, and (2) to identify temporally interpretable morphological and anatomical markers.

Methods

We collected dominant branches in 14 adult trees and identified growth markers that limit longitudinal and radial increments. We coupled this approach with a 2-year phenological survey of 20 trees.

Results

Leaf shedding, growth unit elongation and growth ring formation define the phenological cycle. At tree scale, this cycle is synchronous and affects all axes. At population scale, trees can be desynchronized. This cycle is annual despite some slight variability. Successive growth units and growth rings are easily identifiable.

Conclusion

Dating a branch by counting the number of growth units or growth rings is possible in many years with a reasonable error. Nevertheless, estimating their precise month of formation in order to study climatic influences remains difficult.

Keywords

Crown development Deciduousness Dendrochronology French Guiana Growth ring Phenology Tree architecture Wood anatomy 

Notes

Acknowledgments

This study is part of the GUYAFOR project (30 075, FEDER 2007–2013), with financial support provided by European structural funds. Since 1984, forest inventories at the Paracou experimental site have also been funded by the National Forestry Fund (FFN), Ecofor, Silvolab, Fonds National de la Science and CIRAD, the institution in charge of Paracou. The authors thank the two anonymous reviewers for their insightful comments on earlier drafts of the manuscript.

References

  1. Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407PubMedCrossRefGoogle Scholar
  2. Borchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J 20:239–247Google Scholar
  3. Borchert R (2004) Environmental control of tropical tree phenology. http://www.biology.ku.edu/tropical_tree_phenology/
  4. Boulet R, Brunet D (1983) Prospection pédologique en vue de l’implantation des blocs de l’opération C.T.F.T. “Forêt Naturelle”. Technical report ORSTOM, p 7Google Scholar
  5. Coster C (1927) Zur Anatomie und Physiologie der Zuwachszonen und Jahresbildung in den Tropen I. Ann Jard Bot Buitenzorg 37:47–161Google Scholar
  6. Creber GT, Chaloner WG (1990) Environmental influences on cambial activity. In: Iqbal M (ed) The vascular cambium. Research Studies, Taunton, Somerset, pp 159–199Google Scholar
  7. Détienne P (1995) Growth ring types and occurrence in some French Guianan species. BFT 243:65–75Google Scholar
  8. Dolédec S, Chessel D (1987) Rythmes saisonniers et composantes stationnelles en milieu aquatique. I: Description d'un plan d'observation complet par projection de variables. Acta Oecol 8:403–426Google Scholar
  9. Dünisch O, Bauch J, Gasparotto L (2002) Formation of increment zones and intraannual growth dynamics in the xylem of Swietenia macrophylla, Carapa guianensis, and Cedrela odorata (Meliaceae). IAWA J 23:101–119Google Scholar
  10. Hallé F, Martin R (1968) Etude de la croissance rythmique chez l’Hévéa (Hevea brasiliensis Mull. Arg.). Adansonia, Ser. 2, 8(4):475-503Google Scholar
  11. Heuret P, Barthélémy D, Nicolini E, Atger C (2000) Analyse des composantes de la croissance en hauteur et de la formation du tronc chez le chêne sessile, Quercus petraea (Matt.) Liebl. (Fagaceae) en sylviculture dynamique. Can J Bot 78:361–373Google Scholar
  12. Heuret P, Guédon Y, Guérard N, Barthélémy D (2003) Analysing branching pattern in plantations of young red oak trees (Quercus rubra L., Fagaceae). Ann Bot 91:479–492PubMedCrossRefGoogle Scholar
  13. Heuret P, Meredieu C, Coudurier T, Courdier F, Barthélémy D (2006) Ontogenetic trends in the morphological features of main stem annual shoots of Pinus pinater Ait. (Pinaceae). Am J Bot 93:1577–1587PubMedCrossRefGoogle Scholar
  14. Hopkins HCF (1986) Parkia (Leguminosae: Mimosoideae), Monograph. Flora Neotropica 43, New York Botanical GardenGoogle Scholar
  15. Iqbal M (1995) Structure and behaviour of vascular cambium and the mechanism and control of cambial growth. In: Iqbal M (ed) The cambial derivatives. Encyclopedia of Plant Anatomy, Borntraeger, pp 1–67Google Scholar
  16. Kushwaha CP, Tripathi SK, Singh GS, Singh K (2010) Diversity of deciduousness and phenological traits of key Indian dry tropical forest trees. Ann For Sci 67:310CrossRefGoogle Scholar
  17. Lebreton JD, Sabatier R, Banco G, Bacou AM (1991) Principal component and correspondence analyses with respect to instrumental variables: an overview of their role in studies of structure–activity and species–environment relationships. In: Devillers J, Karcher W (eds) Applied multivariate analysis in SAR and environmental studies. Kluwer, Dordrecht, pp 85–114CrossRefGoogle Scholar
  18. Leith H (1974) Phenology and seasonality modelling. Springer, New YorkGoogle Scholar
  19. Little CHA, Pharis RP (1995) Hormonal control of radial and longitudinal growth in the tree stem. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic, San Diego, pp 281–319Google Scholar
  20. Longuetaud F, Caraglio Y (2009) Pith: a marker of primary growth of in Picea abies (L.) Karst. Trees-Struct Funct 23:325–334CrossRefGoogle Scholar
  21. Loubry D (1994) La phénologie des arbres caducifoliés en forêt guyanaise (5° de latitude nord): illustration d’un déterminisme à composante endogène et exogène. Can J Bot 72:1843–1857CrossRefGoogle Scholar
  22. Newstrom LE, Frankie GW, Baker GH (1994) A new classification for plant phenology based on flowering patterns in lowland tropical rain-forest trees at La Selva, Costa Rica. Biotrop 26:141–159CrossRefGoogle Scholar
  23. Nicolini E (2000) Nouvelles observations sur la morphologie des unités de croissance du hêtre (Fagus sylvatica L.). Symétrie des pousses, reflet de la vigueur des arbres. Can J Bot 78:77–87Google Scholar
  24. Nicolini E, Chanson B, Bonne F (2001) Stem growth and epicormic branch formation in understorey beech trees (Fagus sylvatica L.). Ann Bot 87:737–750CrossRefGoogle Scholar
  25. O’Brien J, Oberbauer SF, Clark DB, Clark DA (2008) Phenology and stem diameter increment seasonality in a Costa Rican wet tropical forest. Biotrop 40:151–159CrossRefGoogle Scholar
  26. Passo A, Puntieri JG, Barthélémy D (2002) Trunk and main-branch development in Nothofagus pumilio (Nothofagaceae): a retrospective analysis of tree growth. Can J Bot 80:763–772CrossRefGoogle Scholar
  27. Reich PB (1995) Phenology of tropical forests: patterns, causes, and consequences. Can J Bot 73:164–174CrossRefGoogle Scholar
  28. Rozendaal DMA, Zuidema PA (2011) Dendroecology in the tropics: a review. Trees-Struct Funct 25:3–16CrossRefGoogle Scholar
  29. Sabatier S, Barthélémy D (1999) Growth dynamics and morphology of annual shoots according to their architectural position in young Cedrus atlantica (Endl.) Manetti ex Carrie`re (Pinaceae). Ann Bot 84:387–392CrossRefGoogle Scholar
  30. Sakai S (2001) Phenological diversity in tropical forests. Popul Ecol 43:77–86CrossRefGoogle Scholar
  31. Worbes M (1995) How to measure growth dynamics in tropical trees—a review. IAWA J 16:337–351Google Scholar
  32. Worbes M (2009) Annual growth rings, rain-fall dependent growth and long-term growth patterns of tropical trees from the Caparo forest reserve in Venezuela. J Trop Ecol 87:391–403Google Scholar
  33. Yañez-Espinosa L, Terrazas T, Lopez-Mata L (2006) Integrated analysis of tropical trees growth: a multivariate approach. Ann Bot 98:637–645PubMedCrossRefGoogle Scholar
  34. Yañez-Espinosa L, Terrazas T, Lopez-Mata L (2010) Phenology and radial stem growth periodicity in evergreen subtropical rainforest trees. IAWA J 31:293–307Google Scholar
  35. Zalamea PC, Stevenson PR, Madrinan S, Aubert PM, Heuret P (2008) Growth pattern and age determination for Cecropia sciadophylla (Utricaceae). Am J Bot 95:263–271PubMedCrossRefGoogle Scholar
  36. Zimmerman MH, Brown CL (1977) Trees, structure and function. Springer, New YorkGoogle Scholar

Copyright information

© INRA / Springer-Verlag France 2012

Authors and Affiliations

  • Eric Nicolini
    • 1
    Email author
  • Jacques Beauchêne
    • 2
  • Benjamin Leudet de la Vallée
    • 2
  • Julien Ruelle
    • 3
  • Thomas Mangenet
    • 1
    • 4
  • Patrick Heuret
    • 3
  1. 1.Unité Mixte de Recherche CIRAD-CNRS-INRA-IRD-Université Montpellier 2 “botAnique et bioinforMatique de l’Architecture des Plantes” (AMAP)KourouFrench Guiana
  2. 2.CIRAD, UMR ECOFOGKourouFrench Guiana
  3. 3.INRA, UMR ECOFOGKourouFrench Guiana
  4. 4.INRA, UMR AMAPMontpellierFrance

Personalised recommendations