Annals of Forest Science

, Volume 69, Issue 3, pp 399–408 | Cite as

The effect of the G‐layer on the viscoelastic properties of tropical hardwoods

  • J. Paul McLeanEmail author
  • Olivier Arnould
  • Jacques Beauchêne
  • Bruno Clair
Original Paper


Context and aim

This study aimed to examine the effect of the tension wood G‐layer on the viscoelastic properties of wood.


Tension wood and opposite wood samples were obtained from six French Guianese tropical rainforest species (Sextonia rubra, Ocotea guyanensis, Inga alba, Tachigali melinoni, Iyranthera sagotiana and Virola michelii); the tension wood of the former three of these species had a G‐layer, whilst the tension wood from the latter three had no G‐layer. Tensile dynamic mechanical analysis (DMA) was performed on green never dried wood samples in the longitudinal direction with samples submerged in a water bath at a temperature (30°C) and frequency (1 Hz) representative of the conditions experienced by wood within a living tree. Then, DMA was repeated with samples conditioned to an air-dried state. Finally, samples were oven-dried to measure longitudinal shrinkage.


Tension wood did not always have a higher longitudinal storage (elastic) modulus than opposite wood from the same tree regardless of the presence or absence of a G‐layer. For the species containing a G‐layer, tension wood had a higher damping coefficient and experienced a greater longitudinal shrinkage upon drying than opposite wood from the same species. No difference was found in damping coefficients between tension wood and opposite wood for the species that had no G‐layer.


It is proposed that the different molecular composition of the G-layer matrix has an influence on the viscoelasticity of wood, even if a biomechanical gain is not yet clear. This study shows that rheological properties and longitudinal shrinkage can be used to detect the presence of a G‐layer in tension wood.


DMA G‐layer Reaction wood Tropical wood Viscoelasticity 



This project was supported by the French National Research Agency (ANR05 BDIV 012 04–WOODIVERSITY) and a joint project JSPS-CNRS. We thank Professor Yamamoto, K. Abe and J. Ruelle (Nagoya University, Japan) for help in field measurements and sample collection; Soepe Koese for sample preparation at the CIRAD facility in Kourou (French Guyana); and Professor Philip Harris (University of Auckland, New Zealand) for discussions about cell wall compositions. Finally, Gilles Camp from LMGC, University of Montpellier 2, is gratefully acknowledged for building the water bath and other necessary additions to the DMA apparatus.


  1. Baba K, Park YW, Kaku T, Kaida R, Takeuchi M, Yoshida M, Hosoo Y, Ojio Y, Okuyama T, Taniguchi T, Ohmiya Y, Kondo T, Shani Z, Shoseyov O, Awano T, Serada S, Norioka N, Norioka S, Hayashi T (2009) Xyloglucan for generating tensile stress to bend tree stem. Mol Plant 2:893–903. doi: doi:10.1093/mp/ssp054 PubMedCrossRefGoogle Scholar
  2. Bootten TJ, Harris PJ, Melton LD, Newman RH (2004) Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan–cellulose interactions in the cell wall. J Exp Bot 55:571–583. doi: 10.1093/jxb/erh065 PubMedCrossRefGoogle Scholar
  3. Bruchert F, Speck O, Spatz HC (2003) Oscillations of plants’ stems and their damping: theory and experimentation. Philos Transac Royal Soc Lond Ser B—Biol Sci 358:1487–1492. doi: 10.1098/rstb.2003.1348 CrossRefGoogle Scholar
  4. Cave ID (1968) Anisotropic elasticity of plant cell wall. Wood Sci Technol 2:268CrossRefGoogle Scholar
  5. Chang SS, Clair B, Ruelle J, Beauchene J, Di Renzo F, Quignard F, Zhao GJ, Yamamoto H, Gril J (2009) Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot 60:3023–3030. doi: 10.1093/jxb/erp133 PubMedCrossRefGoogle Scholar
  6. Clair B, Thibaut B (2001) Shrinkage of the gelatinous layer of poplar and beech tension wood. IAWA J 22:121–131Google Scholar
  7. Clair B, Ruelle J, Thibaut B (2003) Relationship between growth stress, mechanical–physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea sativa Mill.). Holzforschung 57:189–195CrossRefGoogle Scholar
  8. Clair B, Ruelle J, Beauchene J, Prevost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rain forest species 1. Occurrence and efficiency of the G-layer. IAWA J 27:329–338Google Scholar
  9. Clair B, Gril J, Di Renzo F, Yamamoto H, Quignard F (2008) Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood. Biomacromolecules 9:494–498. doi: 10.1021/bm700987q PubMedCrossRefGoogle Scholar
  10. Clair B, Almeras T, Pilate G, Jullien D, Sugiyama J, Riekel C (2011) Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction. Plant Physiol 155:562–570. doi: 10.1104/pp.110.167270 PubMedCrossRefGoogle Scholar
  11. Coutand C, Jeronimidis G, Chanson B, Loup C (2004) Comparison of mechanical properties of tension and opposite wood in Populus. Wood Sci Technol 38:11–24. doi: 10.1007/s00226-003-0194-4 CrossRefGoogle Scholar
  12. Cowdrey DR, Preston RD (1966) Elasticity and microfibrillar angle in the wood of Sitka spruce. Proc R Soc London, Ser B 166:245–272. doi: 10.1098/rspb.1966.0097 CrossRefGoogle Scholar
  13. Daniel G, Filonova L, Kallas AM, Teeri TT (2006) Morphological and chemical characterisation of the G-layer in tension wood fibres of Populus tremula and Betula verrucosa: labelling with cellulose-binding module CBM1(HjCel7A) and fluorescence and FE-SEM microscopy. Holzforschung 60:618–624. doi: 10.1515/hf2006.104 CrossRefGoogle Scholar
  14. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  15. Donaldson LA (2001) Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry 57:859–873PubMedCrossRefGoogle Scholar
  16. Fang CH, Clair B, Gril J, Liu SQ (2008) Growth stresses are highly controlled by the amount of G-layer in poplar tension wood. IAWA J 29:237–246Google Scholar
  17. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinGoogle Scholar
  18. Fisher JB, Stevenson JW (1981) Occurrence of reaction wood in branches of dicotyledons and its role in tree architecture. Bot Gaz 142:82–95CrossRefGoogle Scholar
  19. Joseleau JP, Imai T, Kuroda K, Ruel K (2004) Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta 219:338–345. doi: 10.1007/s00425-004-1226-5 PubMedCrossRefGoogle Scholar
  20. Jourez B, Riboux A, Leclercq A (2001) Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv ‘Ghoy’). IAWA J 22:133–157Google Scholar
  21. Jullien D, Gril J (2008) Growth strain assessment at the periphery of small-diameter trees using the two-grooves method: influence of operating parameters estimated by numerical simulations. Wood Sci Technol 42:551–565. doi: 10.1007/s00226-008-0202-9 CrossRefGoogle Scholar
  22. Mellerowicz EJ, Immerzeel P, Hayashi T (2008) Xyloglucan: the molecular muscle of trees. Ann Bot 102:659–665. doi: 10.1093/aob/mcn170 PubMedCrossRefGoogle Scholar
  23. Menard KP (2008) Dynamic mechanical analysis: a practical introduction. CRC, Boca RatonCrossRefGoogle Scholar
  24. Meylan BA (1972) The influence of microfibril angle on the longitudinal shrinkage–moisture content relationship. Wood Sci Technol 6:293–301. doi: 10.1007/bf00357051 CrossRefGoogle Scholar
  25. Montero C, Clair B, Alméras T, van der Lee A, Gril J (2011) Relationship between wood elastic strain under bending and cellulose crystal strain. Comp Sci Technol. doi: 10.1016/j.compscitech.2011.10.014
  26. Moore JR, Maguire DA (2008) Simulating the dynamic behavior of Douglas-fir trees under applied loads by the finite element method. Tree Physiol 28:75–83. doi: 10.1093/treephys/28.1.75 PubMedCrossRefGoogle Scholar
  27. Navi P, Stanzl-Tschegg S (2009) Micromechanics of creep and relaxation of wood. A review COST Action E35 2004–2008: Wood machining—micromechanics and fracture. Holzforschung 63:186–195. doi: 10.1515/hf.2009.013 CrossRefGoogle Scholar
  28. Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, Funada R, Brumer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar—a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48:843–855. doi: 10.1093/pcp/pcm055 PubMedCrossRefGoogle Scholar
  29. Norberg PH, Meier H (1966) Physical and chemical properties of gelatinous layer in tension wood fibres of aspen (Populus tremula L.). Holzforschung 20:174–178CrossRefGoogle Scholar
  30. Onaka F (1949) Studies on compression and tension wood. Wood research bulletin. Kyoto University, JapanGoogle Scholar
  31. Roger P, Mandla T, James H, Roger R, Jeffrey R (2005) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC, Boca Raton. doi:10.1201/9780203492437.ch3
  32. Ruelle J, Clair B, Beauchene J, Prevost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rain forest species 2. Comparison of some anatomical and ultrastructural criteria. IAWA J 27:341–376Google Scholar
  33. Ruelle J, Beauchene J, Thibaut A, Thibaut B (2007) Comparison of physical and mechanical properties of tension and opposite wood from ten tropical rainforest trees from different species. Ann For Sci 64:503–510. doi: 10.1051/forest:2007027 CrossRefGoogle Scholar
  34. Salmen L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review COST Action E35 2004–2008: Wood machining—micromechanics and fracture. Holzforschung 63:121–129. doi: 10.1515/hf.2009.011 CrossRefGoogle Scholar
  35. Sun N, Das S, Frazier CE (2007) Dynamic mechanical analysis of dry wood: linear viscoelastic response region and effects of minor moisture changes. Holzforschung 61:28–33. doi: 10.1515/hf.2007.006 CrossRefGoogle Scholar
  36. Tanaka F, Koshijima T, Okamura K (1981) Characterization of cellulose in compression and opposite woods of a Pinus densiflora tree grown under the influence of strong wind. Wood Sci Technol 15:265–273. doi: 10.1007/bf00350944 CrossRefGoogle Scholar
  37. Trenard Y, Gueneau P (1975) Relations between growth stresses and tension wood in beech. Holzforschung 29:217–223CrossRefGoogle Scholar
  38. Wada M, Okano T, Sugiyama J, Horii F (1995) Characterization of tension and normally lignified wood cellulose in Populus maximowiczii. Cellulose 2:223–233. doi: 10.1007/bf00811814 CrossRefGoogle Scholar
  39. Wardrop AB (1964) The reaction anatomy of arborescent angiosperms. In: Zimmerman MH (ed) The formation of wood in forest tree. Academic, New York, pp 405–456Google Scholar
  40. Yoshida M, Okuyama T (2002) Techniques for measuring growth stress on the xylem surface using strain and dial gauges. Holzforschung 56:461–467CrossRefGoogle Scholar
  41. Yoshida M, Okuda T, Okuyama T (2000) Tension wood and growth stress induced by artificial inclination in Liriodendron tulipifera Linn. and Prunus spachiana Kitamura f. ascendens Kitamura. Ann For Sci 57:739–746CrossRefGoogle Scholar
  42. Young RJ, Eichhorn SJ, Shyng YT, Riekel C, Davies RJ (2004) Analysis of stress transfer in two-phase polymer systems using synchrotron microfocus X-ray diffraction. Macromolecules 37:9503–9509. doi: 10.1021/ma048484x CrossRefGoogle Scholar

Copyright information

© INRA / Springer-Verlag France 2012

Authors and Affiliations

  • J. Paul McLean
    • 1
    • 2
    Email author
  • Olivier Arnould
    • 1
  • Jacques Beauchêne
    • 3
  • Bruno Clair
    • 1
  1. 1.Laboratoire de Mécanique et Génie Civil (LMGC)Université Montpellier 2, CNRSMontpellierFrance
  2. 2.Forest Products Research InstituteEdinburgh Napier UniversityEdinburghUK
  3. 3.UMR Ecologie des Forêts de Guyane (ECOFOG)CIRADKourouFrench Guiana

Personalised recommendations