Annals of Forest Science

, Volume 69, Issue 2, pp 153–165 | Cite as

Stochastic modelling of tree annual shoot dynamics

  • Philippe de Reffye
  • MengZhen Kang
  • Jing Hua
  • Daniel Auclair
Original Paper

Abstract

• Context

Modelling annual shoot development processes is a key step towards functional–structural modelling of trees. Various patterns of meristem activity can be distinguished in tree shoots, with active periods of phytomer production followed by rest periods. This approach has seldom been integrated in functional–structural tree models.

• Aims

This paper presents theoretical research work on modelling and computation of the dynamics of tree annual shoots using stochastic processes with various development patterns: continuous or rhythmic, monocyclic or polycyclic, “seasonal” or “a-seasonal”, with preformation or neoformation produced from meristem functioning.

• Methods

The renewal theory is used to compute stochastic aspects of phytomer production, resulting from meristem extension or rest periods and meristem mortality.

• Results

Continuous development can be modelled with a Bernoulli process, while rhythmic development is modelled by alternation between extension and rest periods, the duration of each period following specific distributions.

• Conclusion

The application of such stochastic modelling is the estimation of organ production during tree development as a component of the demand in functional–architectural tree models, used for computing biomass production and partitioning.

Keywords

Renewal theory Architectural tree model Meristem functioning Polycyclism Monocyclism GreenLab 

References

  1. Barczi JF, Rey H, Caraglio Y, de Reffye P, Barthélémy D, Dong Q, Fourcaud T (2008) AMAP-Sim: a structural whole-plant simulator based on botanical knowledge and designed to host external functional models. Ann Bot 101:1125–1138PubMedCrossRefGoogle Scholar
  2. Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407PubMedCrossRefGoogle Scholar
  3. Barthélémy D, Edelin C, Hallé F (1989) Architectural concepts for tropical trees. In: Holm-Nielsen LB, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic, London, pp 89–100Google Scholar
  4. Biliouris D, Van der Zande D, Verstraeten WW, Muys B, Coppin P (2009) Assessing the impact of canopy structure simplification in common multilayer models on irradiance absorption estimates of measured and virtually created Fagus silvatica (L.) stands. Remote Sens 1:1009–1027CrossRefGoogle Scholar
  5. Bosanac B, Zanchi P (2002) Onyx tree conifer user’s manual, version 5.1. Onyx Computing Inc, CambridgeGoogle Scholar
  6. Caraglio Y, Elguero E, Mialet I, Rey H (1990) Le Peuplier: modélisation et simulation de son architecture. CIRAD/IDF report, Montpellier, FRGoogle Scholar
  7. Dabadie P, de Reffye P, Dinouard P (1991) Modelling bamboo growth and architecture: Phyllostachys viridi-glaucescens A & C Rivière. J Am Bamboo Soc 8:65–79Google Scholar
  8. De Jong T, Da Silva D (2010) FSPM2010: proceedings of the 6th international workshop on functional–structural plant models. Univ California, DavisGoogle Scholar
  9. de Reffye P, Dinouard P, Barthélémy D (1991a) Modélisation et simulation de l’architecture de l’Orme du Japon Zelkova serrata (Thunb) Makino (Ulmaceae): la notion d’axe de référence. Naturalia Monspeliensia Sp Issue:251–266Google Scholar
  10. de Reffye P, Elguero E, Costes E (1991b) Growth units construction in trees: a stochastic approach. Acta Biotheor 39:325–342CrossRefGoogle Scholar
  11. de Reffye P, Houllier F, Blaise F, Barthélémy D, Dauzat J, Auclair D (1995) A model simulating above- and below-ground tree architecture with agroforestry applications. Agrofor Syst 30:175–197CrossRefGoogle Scholar
  12. de Reffye P, Heuvelink E, Barthélémy D, Cournède PH (2008) Plant growth models. In: Jorgensen SE, Fath BD (eds) Encyclopedia of ecology, vol 4. Elsevier, Amsterdam, pp 2824–2838CrossRefGoogle Scholar
  13. Deussen O, Lintermann B (2005) Digital design of nature: computer generated plants and organics. Springer, BerlinGoogle Scholar
  14. Feller W (1968) An introduction to probability theory and its applications, vol. 1, 3rd edn. Wiley, New YorkGoogle Scholar
  15. Feng L, de Reffye P, Dreyfus P, Auclair D (2012) Connecting an architectural plant model to a forest stand dynamics model—application to Austrian black pine stand visualization. Ann For Sci. doi:10.1007/s13595-011-0144-5
  16. Galopin G, Mauget JC, Morel P (2010) Morphogenetic analysis of the phenotypic variability of the architectural unit of Hydrangea macrophylla. Ann For Sci 67. doi:10.1051/forest/2009115
  17. Godin C (2000) Representing and encoding plant architecture: a review. Ann For Sci 57:413–438CrossRefGoogle Scholar
  18. Griffon S, Nespoulous A, Cheylan JP, Marty P, Auclair D (2011) Virtual reality for cultural landscape visualization. Virtual Reality. doi:0.1007/s10055-010-0160-z
  19. Guedon Y, Puntieri J, Sabatier S, Barthélémy D (2006) Relative extents of preformation and neoformation in tree shoots: analysis by a deconvolution method. Ann Bot 98:835–844PubMedCrossRefGoogle Scholar
  20. Guo Y, Ma Y, Zhan Z, Li B, Dingkuhn M, Luquet D, de Reffye P (2006) Parameter optimization and field validation of the functional–structural model GREENLAB for maize. Ann Bot 97:217–230PubMedCrossRefGoogle Scholar
  21. Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests. Springer, BerlinCrossRefGoogle Scholar
  22. Jaeger M, de Reffye P (1992) Basic concepts of computer simulation of plant growth. J Biosci 17:275–291CrossRefGoogle Scholar
  23. Kang MZ, de Reffye P, Barczi JF, Hu BG, Houllier F (2003) Stochastic 3D tree simulation using substructure instancing. In: Hu BG, Jaeger M (eds) Plant growth modelling and applications. Tsinghua University Press, Beijing, pp 154–168Google Scholar
  24. Kang MZ, Cournède PH, de Reffye P, Auclair D, Hu BG (2008) Analytical study of a stochastic plant growth model: application to the GreenLab model. Math Comput Simul 78:57–75CrossRefGoogle Scholar
  25. Kimmins JP, Blanco JA, Seely B, Welham C, Scoullar K (2008) Complexity in modelling forest ecosystems: how much is enough? For Ecol Manag 256:1646–1658CrossRefGoogle Scholar
  26. Kohyama T, Ojima DS, Pitelka LF (2005) Forest ecosystems and environments: scaling up from shoot module to watershed. Springer, BerlinGoogle Scholar
  27. Kurth W (1994) Morphological models of plant growth: possibilities and ecological relevance. Ecol Model 75–76:299–308CrossRefGoogle Scholar
  28. Le Roux X, Lacointe A, Escobar-Guttierez A, Le Dizes S (2001) Carbon-based models of individual tree growth: a critical appraisal. Ann For Sci 58:469–506CrossRefGoogle Scholar
  29. Mäkelä A, Landsberg J, Ek AR et al (2000) Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol 20:289–298PubMedGoogle Scholar
  30. Mathieu A, Cournède PH, Barthélémy D, de Reffye P (2008) Rhythms and alternating patterns in plants as emergent properties of a model of interaction between development and functioning. Ann Bot 101:1233–1242PubMedCrossRefGoogle Scholar
  31. Mathieu A, Cournède PH, Letort V, Barthélémy D, de Reffye P (2009) A dynamic model of plant growth with interactions between development and functional mechanisms to study plant structural plasticity related to trophic competition. Ann Bot 103:1173–1186PubMedCrossRefGoogle Scholar
  32. Melson SL, Harmon ME, Fried JS, Domingo JB (2011) Estimates of live-tree carbon stores in the Pacific Northwest are sensitive to model selection. Carbon Balance Manag 6:2PubMedCrossRefGoogle Scholar
  33. Parsons RA, Mell WE, McCauley P (2011) Linking 3D spatial models of fuels and fire: effects of spatial heterogeneity on fire behavior. Ecol Model 222:679–691CrossRefGoogle Scholar
  34. Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Saarenmaa H, Väkevä J (1996) LIGNUM: a tree model based on simple structural units. Ann Bot 77:87–98CrossRefGoogle Scholar
  35. Pretzsch H (2009) Forest dynamics, growth and yield. Springer, BerlinGoogle Scholar
  36. Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants. Springer, New YorkCrossRefGoogle Scholar
  37. Sabatier S, Barthélémy D (2001) Annual shoot morphology and architecture in Persian Walnut, Juglans regia L. (Juglandaceae). Acta Hortic 544:255–264Google Scholar
  38. Vos J, Marcelis LFM, Evers JB (2007) Functional–structural plant modelling in crop production—adding a dimension. In: Vos J, Marcelis LFM, de Visser PHB, Struik PC, Evers JB (eds) Functional–structural plant modelling in crop production. Springer, Amsterdam, pp 1–12CrossRefGoogle Scholar
  39. Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, de Visser PHB (2010) Functional-structural plant modelling: a new versatile tool in crop science. J Exp Bot 61:2101–2115PubMedCrossRefGoogle Scholar
  40. Wang F, Kang MZ, Lu Q, Letort V, Han H, Guo Y, de Reffye P, Li B (2011) A stochastic model of tree architecture and biomass partitioning: application to Mongolian Scots pines. Ann Bot 107:781–792PubMedCrossRefGoogle Scholar
  41. Yan HP, Kang MZ, de Reffye P, Dingkuhn M (2004) A dynamic, architectural plant model simulating resource-dependent growth. Ann Bot 93:591–602PubMedCrossRefGoogle Scholar

Copyright information

© INRA / Springer-Verlag France 2011

Authors and Affiliations

  • Philippe de Reffye
    • 1
  • MengZhen Kang
    • 2
  • Jing Hua
    • 3
  • Daniel Auclair
    • 4
  1. 1.CIRAD, UMR AMAPMontpellierFrance
  2. 2.State Key Laboratory of Management and Control for Complex Systems, LIAMA, NLPR, Institute of Automation, Chinese Academy of SciencesBeijingChina
  3. 3.Chinese Academy of Sciences; LIAMA; NLPR, Institute of AutomationBeijingChina
  4. 4.INRA, UMR AMAPMontpellierFrance

Personalised recommendations