Annals of Forest Science

, Volume 68, Issue 5, pp 993–1003 | Cite as

Age determination of large live trees with inner cavities: radiocarbon dating of Platland tree, a giant African baobab

  • Adrian Patrut
  • Karl F. von Reden
  • Robert Van Pelt
  • Diana H. Mayne
  • Daniel A. Lowy
  • Dragos Margineanu
Original Paper

Abstract

Introduction

For large trees without a continuous sequence of growth rings in their trunk, such as the African baobab (Adansonia digitata L.), the only accurate method for age determination is radiocarbon dating. As of today, this method was limited to dating samples collected from the remains of dead specimens.

Methods

Our research extends significantly the dating of such trees to large live specimens with inner cavities. The new approach is based on collecting samples from the cavities and their subsequent radiocarbon dating.

Results

The giant two-stemmed Platland tree, also known as Sunland baobab, was investigated by using this new approach. AMS radiocarbon dates of the oldest sample segments originating from the two inner cavities indicate that the large stem I (364.5 m3) is 750 ± 75 years old, while the much smaller stem II (136.7 m3) has 1,060 ± 75 years. Results also show that stem I is still growing very fast, while the older stem II slowed down consistently its growth over the past 250 years. The complete mapping of Platland tree determined an overall wood volume of 501.2 m3.

Conclusions

Dating results demonstrate that the size–age relation cannot be used for estimating accurately the age of African baobabs.

Keywords

Adansonia digitata Radiocarbon dating Age determination Growth rate Accelerator mass spectrometry 

References

  1. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360Google Scholar
  2. von Breitenbach F (1985) Aantekeninge oor die groeitempo van aangeplante kremeteartbome (Adansonia digitata) en opmerkinge ten opsigte van lewenstyd, groeifases en genetiese variasie van die spesie. J Dendrology 5:1–21Google Scholar
  3. Department of Water Affairs and Forestry (South Africa) (2008) List of champion trees. Available at http://www2.dwaf.gov.za
  4. Esterhuyse N, von Breitenbach J, Sőhnge H (2001) Remarkable trees of South Africa. Briza, Pretoria, pp 155–161Google Scholar
  5. Hartesveldt RJ, Harvey HT, Shellhammer HS (1975) The giant sequoias of the Sierra Nevada. National Park Service, Washington, pp 57–59Google Scholar
  6. Martínez-Ramos M, Alvarez-Buylla ER (1998) How old are tropical rain forest trees? Trends in Plant Science 3:400–405CrossRefGoogle Scholar
  7. McCormack FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr bp. Radiocarbon 46:1087–1092Google Scholar
  8. Olsson IU (1986) Radiometric Methods. In: Berglund B (ed) Handbook of Holocene palaeoecolgy and palaeohydrology. Wiley, Chichester, pp 273–312Google Scholar
  9. Patrut A, von Reden K, Lowy DA, Alberts AH, Pohlman JW, Wittmann R, Gerlach D, Xu L, Mitchell CS (2007) Radiocarbon dating of a very large African baobab. Tree Physiol 27:1569–1574PubMedGoogle Scholar
  10. Patrut A, Mayne DH, von Reden KF, Lowy DA, Van Pelt R, McNichol AP, Roberts ML, Margineanu D (2010a) Fire history of a giant African baobab evidenced by radiocarbon dating. Radiocarbon 52:717–726Google Scholar
  11. Patrut A, Mayne DH, von Reden KF, Lowy DA, Venter S, McNichol AP, Roberts ML, Margineanu D (2010b) Age and growth rate dynamics of an old African baobab determined by radiocarbon dating. Radiocarbon 52:727–734Google Scholar
  12. Patrut A, von Reden KF, Lowy DA, Mayne DH, Elder KE, Roberts ML, McNichol AP (2010c) Comparative AMS radiocarbon dating of pretreated versus non-pretreated tropical wood samples. Nucl Instr Methods B 268:910–913Google Scholar
  13. Poussart PM, Mynemi SCB, Lanzirotti A (2006) Tropical dendrochemistry: a novel approach to estimate age and growth from ringless trees. Geophys Res Lett 33:L17711CrossRefGoogle Scholar
  14. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk RC, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal bp. Radiocarbon 51:1111–1150Google Scholar
  15. Roberts ML, Burton JR, Elder KL, Longworth BE, McIntyre CP, von Reden KF, Han BX, Rosenheim BE, Jenkins WJ, Galutschek E, McNichol AP (2010) A high-performance 14C accelerator mass spectrometry system. Radiocarbon 52:228–235Google Scholar
  16. Sillett SC, Van Pelt R, Koch GW, Ambrose AR, Carroll AL, Antoine ME, Mifsud BF (2010) Increasing wood production through old age in tall trees. For Ecol Manag 259:976–994CrossRefGoogle Scholar
  17. Sofer Z (1980) Preparation of carbon dioxide for stable carbon isotope analysis of petroleum fractions. Anal Chem 52:1389–1391CrossRefGoogle Scholar
  18. Swart ER (1963) Age of the baobab tree. Nature 198:708–709CrossRefGoogle Scholar
  19. Vogel JS, Southon JR, Nelson DE, Brown TA (1984) Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nucl Instr Methods B 5:289–293CrossRefGoogle Scholar
  20. von Reden KF, Schneider RJ, Cohen GJ, Jones GA (1994) Performance characteristics of the 3MV Tandetron AMS system at the National Ocean Sciences AMS Facility. Nucl Instr Methods B 92:7–11CrossRefGoogle Scholar
  21. Wickens GE, Lowe P (2008) The baobabs: pachycauls of Africa, Madagascar and Australia. Springer, Dordrecht, pp 141–142CrossRefGoogle Scholar
  22. Woodborne S, Hall G, Basson S, Zambatis G, Zambatis N (2010) The death of a giant: on the age of baobabs. Savanna Network Meeting, SkukuzaGoogle Scholar
  23. Worbes M, Junk WJ (1999) How old are tropical trees? The persistence of a myth. IAWA J 20:255–260Google Scholar
  24. Worbes M (2002) One hundred years of tree-ring research in the tropics: a brief history and an outlook to future challenges. Dendrochronologia 20:217–231CrossRefGoogle Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Adrian Patrut
    • 1
  • Karl F. von Reden
    • 2
  • Robert Van Pelt
    • 3
  • Diana H. Mayne
    • 4
  • Daniel A. Lowy
    • 5
  • Dragos Margineanu
    • 1
  1. 1.Department of ChemistryBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.NOSAMS Facility, Department of Geology & GeophysicsWoods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.College of Forest Resources, Box 352100University of WashingtonSeattleUSA
  4. 4.Baobab TrustJohannesburgSouth Africa
  5. 5.FlexEl, LLCCollege ParkUSA

Personalised recommendations