Annals of Forest Science

, 68:587 | Cite as

Canopy structure analysis for estimating forest regeneration dynamics and growth in Nothofagus pumilio forests

  • Guillermo J. Martínez Pastur
  • Pablo L. Peri
  • Juan M. Cellini
  • María V. Lencinas
  • Marcelo Barrera
  • Horacio Ivancich
Original Paper



Silviculture systems applied in Nothofagus pumilio forests are based on opening the canopy to stimulate natural regeneration by modifying light and soil moisture. The objective is to evaluate regeneration dynamics of N. pumilio along different forest canopy and solar radiation gradients.

Materials and methods

Regeneration data and seed production were obtained in 98 permanent plots established in old-growth and harvested stands along a crown cover gradient (19–93%). Volumetric soil water content and basal area were also measured, while crown cover and solar radiation transmission were estimated using hemispherical photographs. Sapling height was modeled using plant age, crown cover, and solar radiation transmission of the stands as explanatory variables.


Natural regeneration dynamics were closely related to crown cover values, which determined seed production and the successful establishment and subsequent regeneration growth. Height growth was found to be related to crown cover and solar radiation transmission, where N. pumilio regeneration is optimized at intermediate crown cover levels (45% crown cover, 0.5 effective leaf area index, 26 W m2 global radiation, and 65% percentage of global radiation).


These findings can be used to develop new silvicultural methods or to adjust the current practices to ensure regeneration establishment and maximize height growth at the stand level.


Silviculture Regeneration dynamics Light availability Soil moisture Hemispherical photographs 



The authors gratefully thank the Centro Austral de Investigaciones Científicas, Ricardo Vukasovic of Servicios Forestales Consultancy, Los Cerros Ranch, San Justo Ranch, Kareken sawmill, and Los Castores sawmill for their support during this work. We also thank Sergio Luppo and María Elena Barlafina for provision of the radiation data and Mark Neyland of Forestry Tasmania for his comments about the manuscript.


  1. Anderson C, Martínez Pastur G, Lencinas MV, Wallem P, Moorman MC (2009) Do introduced North American beavers engineer differently in southern South America? An overview with implications for restoration. Mammal Rev 39(1):33–52CrossRefGoogle Scholar
  2. Bava J, López Bernal PM (2005) Cortas de selección en grupo en bosques de lenga. IDIA-XXI 5(8):39–42Google Scholar
  3. Caldentey J, Mayer H, Ibarra M, Promis A (2009) The effects of a regeneration felling on photosynthetic photon flux density and regeneration growth in a Nothofagus pumilio forest. Eur J Forest Res 128:75–84CrossRefGoogle Scholar
  4. Cuevas J (2002) Episodic regeneration at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. Ecology 90:52–60CrossRefGoogle Scholar
  5. Frangi JL, Richter L (1994) Balances hídricos de bosques de Nothofagus de Tierra del Fuego, Argentina. Rev Fac Agron La Plata 70:65–79Google Scholar
  6. Frazer GW, Fournier RA, Trofymow JA, Gall RJ (2001) A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agric For Meteorol 109:249–263CrossRefGoogle Scholar
  7. Gea G, Martínez Pastur G, Cellini JM, Lencinas MV (2004) Forty years of silvicultural management in southern Nothofagus pumilio (Poepp. et Endl.) Krasser primary forests. For Ecol Manage 201(2–3):335–347Google Scholar
  8. Gutiérrez E (1994) Els boscos de Nothofagus de la Terra del Foc com a paradigma de dinámica successional del no-equilibri. Treballs de la SCB 45:93–121Google Scholar
  9. Hardya J, Melloha R, Koeniga G, Marksb D, Winstralb A, Pomeroyc J, Linkd T (2004) Solar radiation transmission through conifer canopies. Agric For Meteorol 126:257–270CrossRefGoogle Scholar
  10. Heinemann K, Kitzberger Th, Veblen Th (2000) Influences of gap microheterogeneity on the regeneration of Nothofagus pumilio in a xeric old-growth forest of northwestern Patagonia, Argentina. Can J For Res 30(1):25–31Google Scholar
  11. Howard TM (1973) Studies in the ecology of Nothofagus cunninghamii Oerst. in natural regeneration on the Mt. Donna Buang Massif, Victoria. Aust J Bot 21(1):67–78CrossRefGoogle Scholar
  12. Lencinas MV, Martínez Pastur G, Moretto A, Gallo E, Busso C (2007) Productividad diferencial de plántulas de Nothofagus pumilio bajo gradientes de luz y humedad del suelo. Bosque 28(3):241–248Google Scholar
  13. Lencinas MV, Martínez Pastur G, Rivero P, Busso C (2008) Conservation value of timber quality vs. associated non-timber quality stands for understory diversity in Nothofagus forests. Biodiv Conserv 17:2579–2597CrossRefGoogle Scholar
  14. Martínez Pastur G, Peri P, Vukasovic R, Vaccaro S, Piriz CV (1997) Site index equation for Nothofagus pumilio Patagonian forest. Phyton 6(1/2):55–60Google Scholar
  15. Martínez Pastur G, Cellini JM, Peri P, Vukasovic R, Fernández C (2000) Timber production of Nothofagus pumilio forests by a shelterwood system in Tierra del Fuego (Argentina). For Ecol Manage 134(1–3):153–162CrossRefGoogle Scholar
  16. Martínez Pastur G, Lencinas MV, Peri P, Arena M (2007a) Photosynthetic plasticity of Nothofagus pumilio seedlings to light intensity and soil moisture. For Ecol Manage 243(2):274–282CrossRefGoogle Scholar
  17. Martínez Pastur G, Lencinas MV, Peri P, Moretto A, Cellini JM, Mormeneo I, Vukasovic R (2007b) Harvesting adaptation to biodiversity conservation in sawmill industry: Technology innovation and monitoring program. J Technol Manage Innov 2(3):58–70Google Scholar
  18. Martínez Pastur G, Lencinas MV, Peri P, Cellini JM (2008) Flowering and seeding patterns in unmanaged and managed Nothofagus pumilio forests with a silvicultural variable retention system. Forstarchiv 79:60–65Google Scholar
  19. Martínez Pastur G, Cellini JM, Peri P, Lencinas MV, Gallo E, Soler ER (2009) Alternative silviculture with variable retention in timber management of South Patagonia. For Ecol Manage 258:436–443CrossRefGoogle Scholar
  20. Messier C, Doucet R, Ruel J, Claveau Y, Kelly C, Lechowicz J (1999) Functional ecology of advance regeneration in relation to light in boreal forests. Can J For Res 29:812–823CrossRefGoogle Scholar
  21. Mittermeier R, Mittermeier C, Robles-Gil P, Pilgrim J, Fonseca G, Brooks J, Konstant J (2002) Wilderness: Earth’s last wild places. Cemex and Conservation International, Washington, p 573Google Scholar
  22. Nuñez M, Bowman D (1986) Nocturnal cooling in a high altitude stand of E. delegatensis as related to stand density. Aust For Res 16:185–197Google Scholar
  23. Peri P, Martínez Pastur G, Lencinas MV (2009) Photosynthetic and stomatal conductance responses to different light intensities and water status of two main Nothofagus species of south Patagonian forest. For Sci 55(3):101–111Google Scholar
  24. Pulido F, Díaz B, Martínez Pastur G (2000) Incidencia del ramoneo del guanaco (Lama guanicoe) sobre la regeneración de lenga (Nothofagus pumilio) en bosques de Tierra del Fuego, Argentina. Invest Agr: Sist Rec For 9(2):381–394Google Scholar
  25. Rebertus A, Veblen Th (1993) Structure and tree-fall gap dynamics of old-growth Nothofagus forests in Tierra del Fuego, Argentina. J Veg Sci 4(5):641–654CrossRefGoogle Scholar
  26. Rebertus A, Kitzberger T, Veblen Th, Roovers L (1997) Blowdown history and landscape patterns in the Andes of Tierra del Fuego, Argentina. Ecology 78(3):678–692CrossRefGoogle Scholar
  27. Richter L, Frangi J (1992) Bases ecológicas para el manejo del bosque de Nothofagus pumilio de Tierra del Fuego. Rev Fac Agron La Plata 68:35–52Google Scholar
  28. Roxburgh JR, Kelly D (1995) Uses and limitations of hemispherical photography for estimating forest light environments. NZ J Ecol 19(2):213–217Google Scholar
  29. Santana A (2006) Resumen meteorológico año 2005 Estación “Jorge C. Schythe” (53°08′S; 70°53′W; 6 m.s.n.m.). Ann Inst Patagonia 34:81–90Google Scholar
  30. Santana A, Porter Ch, Butorovic N, Olave C (2006) Primeros antecedentes climatológicos de estaciones automáticas (AWS) en el Canal Beagle, Magallanes, Chile. Ann Inst Patagonia 34:5–20Google Scholar
  31. Stenburg P, Linder S, Smolander H, Flower-Ellis J (1994) Performance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some Scots pine stands. Tree Physiol 14:981–995Google Scholar
  32. Sun OJ, Sweet GB, Whitehead D, Buchan GD (1995) Physiological responses to water stress and waterlogging in Nothofagus species. Tree Physiol 15:629–638PubMedGoogle Scholar
  33. Veblen Th, Kitzberger T, Burns B, Rebertus A (1997) Perturbaciones y dinámica de regeneración en bosques andinos del sur de Chile y Argentina. In: Armesto J, Villagrán J, Arroyo MK (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago, Chile, pp 169–198Google Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Guillermo J. Martínez Pastur
    • 1
  • Pablo L. Peri
    • 2
  • Juan M. Cellini
    • 3
  • María V. Lencinas
    • 1
  • Marcelo Barrera
    • 3
  • Horacio Ivancich
    • 1
  1. 1.Centro Austral de Investigaciones Científicas (CONICET)Tierra del FuegoArgentina
  2. 2.Universidad Nacional de la Patagonia Austral-CONICET-Instituto Nacional de Tecnología AgropecuariaSanta CruzArgentina
  3. 3.Laboratorio de Investigaciones de Sistemas Ecológicos y Ambientales (LISEA-UNLP)Buenos AiresArgentina

Personalised recommendations