Annals of Forest Science

, Volume 68, Issue 2, pp 385–394 | Cite as

Estimating balanced structure areas in multi-species forests on the Sierra Madre Occidental, Mexico

  • Christian Wehenkel
  • José Javier Corral-Rivas
  • José Ciro Hernández-Díaz
  • Klaus von Gadow
Original Paper



This study presents a method for estimating the minimum area which exhibits a balanced diameter distribution, and the corresponding number of trees, for different tree species and forest types in the Santiago Papasquiaro region in the State of Durango, Mexico. The balanced structure area is defined as the minimum contiguous area that is required for sustainable management of a multi-sized selection forest. A multi-sized forest represents a balanced structure unit if the relationship between harvest and growth can be maintained, using a defined target diameter distribution and disregarding major natural disturbances. The study is based on 17,577 sample plots in uneven-aged forests, which are selectively harvested by local communities.

Results and discussion

The minimum structure areas that provide a balanced diameter distribution in the diameter at breast height (DBH) interval of 12 to 57 cm vary from 0.4 to 122 ha, depending on the particular tree species. This study has shown that it is possible to identify silvicultural treatments that are conducive to sustainable use.


Future management monitoring in the unique forests of Durango will reveal unsustainable harvesting practices more effectively and in a more comprehensive way than before, using the methods presented in this study.


Diameter distribution Sustainable management Species diversity Covariation Permutation test Uneven-aged silviculture Selective harvesting 



This study was generously supported by El Fondo de Cooperación Internacional en Ciencia y Tecnología entre la UE-México (project: 92739). We gratefully acknowledge the support offered by the technical directorate of the Ejido “San Diego de Tezains” who provided the data for this study.


  1. Baker JB, Cain MD, Guldin JM, Murphy PA, Shelton MG, (1996) Uneven-aged silviculture for the loblolly and shortleaf pine forest cover types, United States Department of Agriculture, Forest Service, Southern Research Station, Gereral Technical Report SO-118, p 65Google Scholar
  2. Bücking W (2003) Are there threshold numbers for protected forests? J Environ Manage 67:37–45PubMedCrossRefGoogle Scholar
  3. Buongiorno J, Gilles JK (2003) Decision methods for forest resource management. Academic, San Diego, p 439Google Scholar
  4. Cancino J, Gadow Kv (2002) Stem number guide curves for uneven-aged forests - development and limitations, In: Gadow Kv, Nagel J, Saborowski J 2001. Continuous Cover Forestry—Assessment, Analysis, Scenarios, KluwerGoogle Scholar
  5. Corral-Rivas JJ (2006) Models of tree growth and spatial structure for multi-species, uneven-aged forests in Durango (Mexico), PhD thesis, University of GöttingenGoogle Scholar
  6. Corral-Rivas JJ, Sánchez S, Kotze H, Gadow K (2009) Testing the suitability of the Nepal-Somers stand table projection method for Eucalyptus grandis plantations in South Africa. Southern Forests: J For Sci 71(3):207–214CrossRefGoogle Scholar
  7. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10(6):1500–1508CrossRefGoogle Scholar
  8. Gadow Kv, Hui GY (2007) Can the tree species-area relationship be derived from prior knowledge of the tree species richness? Forest Stud Metsanduslikud Uurimused 46:13–22Google Scholar
  9. Gadow Kv, Puumalainen J (2000) Scenario planning for sustainable forest management. In: Gadow Kv, Pukkala T, Tomé M (eds) Sustainable forest management. Kluwer Academic Publisher, Dordrecht, pp 319–356Google Scholar
  10. García E (1989) Modificaciones al sistema de clasificación climática de kôpen (para adaptarlo a las condiciones de la República Mexicana). Offset Larios, México D.F., 165Google Scholar
  11. Goff FG, West D (1975) Canopy-understory interaction effects on forest population structure. For Sci 21:98–108Google Scholar
  12. Gregorius HR, Degen B, König A (2007) Problems in the analysis of genetic differentiation among populations - a case study in Quercus robur. Silvae Genet 56:190–199Google Scholar
  13. Guldin JM (1991) Uneven-aged BDq regulation of Sierra Nevada mixed conifers. West J Appl For 6(2):27–32Google Scholar
  14. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  15. Koop H (1981) Vegetatiesstructuur en dynamiek van twee natuurlijke bossen: het Neuenburger en Hasbrucher Urwald, Verslagen van landbouwkundige onderzoekingen 904 PUDOW WageningenGoogle Scholar
  16. Koop H (1989) Forest dynamics-SILVI-STAR: a comprehensive monitoring system. Springer, BerlinGoogle Scholar
  17. Korpel S (1982) Degree of equilibrium and dynamical changes of the forest in example of natural forests of Slovakia. Acta Fac For 24:9–13Google Scholar
  18. Kotwal PC, Omprakash MD, Kandari LS, Mali KP, Badyal M, Mishra A (2008) Sustainable forest management through community participation. Curr Sci 95(8):1015–1017Google Scholar
  19. Kurth H (1994) Forsteinrichtung. Nachhaltige Regelung des Waldes, Deutscher Landwirtschaftsverlag. Berlin, p. 592Google Scholar
  20. Lawton JH (1999) Are there general laws in ecology? Oikos 84(2):177–192CrossRefGoogle Scholar
  21. Meyer HA (1933) Eine mathematische Untersuchung über den Aufbau des Plenterwaldes. Schweiz Z Forstwes Zürich 84:33, 88, 124Google Scholar
  22. Nunney L, Campbell KA (1993) Assessing minimum viable population size: demography meets population genetics. Trends Ecol Evol 8:234–239PubMedCrossRefGoogle Scholar
  23. Nyland RD (2002) Silviculture. Concepts and applications, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  24. Rajora OP (1999) Genetic biodiversity impacts of silvicultural practices and phenotypic selection in white spruce. Theor Appl Genet 99:954–961CrossRefGoogle Scholar
  25. Rodríguez CR (1958) Discusión de fórmulas para el cálculo de la productividad maderable y exposición del Método Mexicano de Ordenación de Montes de especies coníferas, Monografía Ftal. del Edo. de Michoacán, Comisión Ftal. del Estado, p 245Google Scholar
  26. Rzedowski J (1978) Vegetación de México. Limusa, MéxicoGoogle Scholar
  27. Schütz JP (2002) Silvicultural tools to develop irregular and diverse forest structures. Forestry 75:329–337CrossRefGoogle Scholar
  28. Schütz JP (2006) Modelling the demographic sustainability of pure beech plenter forests in Eastern Germany. Ann For Sci 63:93–100CrossRefGoogle Scholar
  29. Secretaría de Recursos Naturales y Medio Ambiente (SRNyMA) (2002) Programa Estratégico Forestal 2030, Secretaría de Recursos Naturales y Medio Ambiente del Estado de Durango. Durango, Dgo., p 242Google Scholar
  30. Seymour RS, Kenefic LS (1998) Balance and sustainability in multi-aged stands: a northern conifer case study. J Forest 96:12–17Google Scholar
  31. Silva-Flores R, Hernández-Díaz P, Corral-Rivas JJ, Wehenkel C, Vargas-Larreta B (2010) Species-specific abundance, tree diversity and its relationship to climate factors in mixed and uneven-aged forests of Durango, Mexico. In: Kleinn C, Fehrmann L (eds) Proceedings of the Workshop “Forests in climate change research and policy: The role of forest management and conservation in a complex international setting. Göttingen, Germany, pp. 70–77Google Scholar
  32. Thoms CA, Betters DR (1998) The potencial for ecosytems management in Mexico's forest ejidos. For Ecol Manage 103:149–1179CrossRefGoogle Scholar
  33. Tjørve E (2003) Shapes and functions of species-area curves: a review of possible models. J Biogeogr 30:827–835CrossRefGoogle Scholar
  34. Torres RJM (2000) Sostenibilidad del volumen de cosecha calculado con el método de ordenación de montes. Madera y Bosques 6(2):57–72Google Scholar
  35. Vargas LB (2006) Analyse und Prognose des Einzelbaumwachstums in Strukturreichen Mischbeständen in Durango, Mexiko, PhD thesis Univ. Göttingen, p 173Google Scholar
  36. Westphal C, Tremer N, Oheimb vG, Hansen J, Gadow vK, Härdtle W (2006) Is the reverse J-shaped diameter distribution universally applicable in European virgin beech forests? For Ecol Manage 223(1–3):75–83CrossRefGoogle Scholar
  37. Williams MR (1995) An extreme-value function model of the species incidence and species-area relationship. Ecology 76:2607–2616CrossRefGoogle Scholar
  38. Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87:430–431Google Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Christian Wehenkel
    • 1
  • José Javier Corral-Rivas
    • 2
  • José Ciro Hernández-Díaz
    • 1
  • Klaus von Gadow
    • 3
  1. 1.Instituto de Silvicultura e Industria de la MaderaUniversidad Juárez del Estado de DurangoDurangoMéxico
  2. 2.Facultad de Ciencias ForestalesUniversidad Juárez del Estado de DurangoDurangoMéxico
  3. 3.Burckhardt Institut, Büsgenweg 5Georg-August UniversityGöttingenGermany

Personalised recommendations