Annals of Forest Science

, Volume 68, Issue 1, pp 189–200 | Cite as

Climate/growth relationships in a Pinus cembra high-elevation network in the Southern French Alps

  • Mélanie Saulnier
  • Jean-Louis Edouard
  • Christophe Corona
  • Frédéric Guibal
Original Paper

Abstract

•Introduction

In the context of climate change, assessing climate–growth relationships is of high importance in order to understand how forest ecosystems evolve and to test climate models at regional scale.

•Objectives

This study aims to identify the climate variables that explain most of the variation in Pinus cembra radial growth at different spatial–temporal scales, response functions and moving response functions were processed on chronologies from a dense tree ring network. This original network is centred on the French Alps influenced by the Atlantic, Continental, and Mediterranean synoptic systems.

•Results

A spatial clustering pattern matching the latitudinal climatic gradient was observed in tree ring indexed chronologies and climate responses. The stationary response functions computed for each cluster-averaged population evidenced a thermo-dependent northern cluster (Cl1), a rainfall-dependent southern cluster (Cl3), and an alternative response for the intermediate cluster in between (Cl2). Since the late nineteenth century, the moving response functions indicate an increasing influence of winter precipitation for the northern and the intermediate clusters.

•Conclusion

Considering the increase in temperature and reduction both of summer precipitation predicted by general circulation models and of the snow cover and duration in the French Alps, stone pine is likely to be exposed to stressful conditions during the twenty-first century.

Keywords

Dendrochronology French Alps Pinus cembra Climate–growth responses 

Résumé

Dans le contexte actuel de changement climatique, l’amélioration des connaissances concernant les relations entre le climat et la croissance des arbres est primordiale pour comprendre l’évolution des écosystèmes forestiers et tester des modèles climatiques à l’échelle régionale. Afin de déterminer les variables climatiques expliquant significativement les variations de la croissance radiale du Pin cembro à différentes échelles spatiales et temporelles, un vaste réseau de données dendrochronologiques a été utilisé pour le calcul de fonctions de réponse fixes et mobiles. Ce vaste réseau original est centré sur les Alpes françaises soumises à des influences climatiques océaniques, continentales et méditerranéennes. Les analyses en composante principale réalisées sur les chronologies indicées et sur les résultats des fonctions de réponse révèlent l’influence d’un gradient climatique latitudinal permettant d’identifier différents groupes de populations. Les fonctions de réponses calculées pour chaque groupe de populations moyennées mettent en évidence une dépendance aux températures des populations septentrionales (Cl1), une dépendance aux précipitations des populations méridionales (Cl3) et une réponse alternative d’un groupe intermédiaire Cl2). Depuis la fin du 19ème siècle les fonctions de réponse mobiles révèlent une augmentation de l’influence positive des précipitations hivernales pour les populations des groupes septentrionale et intermédiaire. Compte tenu de l’augmentation des températures et de la réduction à la fois des précipitations estivales prédites par les Modèles Globaux de Circulation et de l’épaisseur et de la durée de la couche nivale dans les Alpes françaises, le Pin cembro pourrait être soumis à une augmentation des conditions de stress au cours du 21ème siècle.

Notes

Acknowledgements

This work was supported by the project ESCARSEL (ANR-06-VULN-010), founded by the French ANR “Vulnérabilité: milieux et climat”, and the Parc Naturel Regional du Queyras and Parc National du Mercantour. Thanks are due to V. Petitcolas and Fleur-Meijer who made, respectively, ten and one chronologies available. Precipitation and temperature data were provided by the HISTALP project. We are deeply grateful to I. Auer for providing us with the latest revised version of the dataset. We also thank two anonymous referees who improved the earlier version of this manuscript.

References

  1. Anfodillo T, Carrer M, Rento S, Urbinati C (1998) Long and short term growth dynamics of Picea abies (L.) Karst, Larix decidua (Mill.), Pinus cembra (L.) and climatic factors: first results of an integrated study at the timberline in eastern Italian Alps. Ecology 29:253–259Google Scholar
  2. Auer I, Bohm R, Jurkovic A, Wolfgang L, Orlik A, Potzmann R, Schoner W, Ungersbock M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin JM, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46CrossRefGoogle Scholar
  3. Baltensweiler W (1993) Why the larch bud-moth cycle collapsed in the subalpine larch–cembran pine forests in the year 1990 for the first time since 1850? Oecologia 94:62–66CrossRefGoogle Scholar
  4. Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311CrossRefGoogle Scholar
  5. Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year tree-ring proxy for Alpine summer temperatures. Clim Dyn 25:141-153Google Scholar
  6. Büntgen U, Frank DC, Wilson R, Carrer M, Urbinati C, Esper J (2008) Testing for tree-ring divergence in the European Alps. Glob Chang Biol 14:2433-2453Google Scholar
  7. Carrer M, Urbinati C (2004) Age-dependent tree-ring growth response to climate in Larix decidua and Pinus cembra. Ecology 85(3):730–740CrossRefGoogle Scholar
  8. Carrer M, Urbinati C (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol 170:861–871PubMedCrossRefGoogle Scholar
  9. Carrer M, Nola P, Edouard JL, Motta R, Urbinati C (2007) Regional variability of climate–growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95:1072–1083CrossRefGoogle Scholar
  10. Cook ER, Holmes RL (1984) Program ARSTAN user manual: laboratory of tree ring research. University of Arizona, TucsonGoogle Scholar
  11. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53Google Scholar
  12. Cook ER, Briffa K, Shiyatov S, Mazepa V (1990) Treering standardization and growth-trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. Kluwer Academic Publishers, Dordrecht, pp 104–123Google Scholar
  13. Fourchy P (1968) Notes sur le pin cembro dans les Alpes françaises. Revue Forestière 20(2):77–94CrossRefGoogle Scholar
  14. Frank D, Esper J (2005) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22:107–121CrossRefGoogle Scholar
  15. Fritts HC (1976) Tree rings and climate. Academic Press, London, 567 ppGoogle Scholar
  16. Guiot J (1991) The bootstrapped response function. Tree-Ring Bull 51:39–41Google Scholar
  17. Havranek W, Tranquillini W (1995) Physiological processes during winter dormancy and their ecological significance. In: Smith WK, Hinckley TM (eds) Ecophysiology of coniferous forests. Acacemic Press, San Diego, pp 95–124Google Scholar
  18. IPCC (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, climate change 2007: the physical science basis. Cambridge University Press, Cambridge, p 996Google Scholar
  19. Jolliffe IT (2002) Principal component analysis. Springer, New YorkGoogle Scholar
  20. Körner C (1998) A re-assessment of high elevation of tree line positions and their explanation. Oecologia 115:445–459CrossRefGoogle Scholar
  21. Martin E, Etchevers P (2005) Impact of climatic change of snow cover and snow hydrology in the French Alps. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions (a state of knowledges overview). Springer, Dordrecht, pp 235–242CrossRefGoogle Scholar
  22. Mayr S, Schwienbacher F, Bauer H (2003) Winter at the alpine timberline. Why does embolism occurs in Norway Spruce but not in stone pine? Plant Physiol 131:780–792PubMedCrossRefGoogle Scholar
  23. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Kübler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatczak K, Mage F, Mestre A, Nordli Ø, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12(10):1969–1976CrossRefGoogle Scholar
  24. Motta R, Nola P (1996) Dendrochrono-ecological signal in three stone pine (Pinus cembra L.) chronologies from theWestern Italian Alps. Dendrochronologia 14:43–57Google Scholar
  25. Oberhuber W (2004) Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiol 24:291–301PubMedGoogle Scholar
  26. Oberhuber W, Kofler W, Pfeifer K, Seeber A, Gruber A, Wieser G (2008) Long-term changes in tree-ring–climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid-1980s. Trees 22:31–40CrossRefGoogle Scholar
  27. Ozenda P (1985) La végétation de la chaîne alpine dans l’espace montagnard européen. Masson (eds.). Paris. p 331Google Scholar
  28. Petitcolas V, Rolland C (1998) Comparaison dendroécologique de Larix decidua Mill., Pinus cembra L. et Pinus uncinata Mill. ex Mirb. dans l’étage subalpin du Briançonnais (Hautes-Alpes, France). Ecology 29:305–310Google Scholar
  29. Schweingruber F (1996) Tree rings and environment. dendroecology. Birmensdorf, Swiss Federal Institute for Forest,Snow and Landscape Research. Haupt, Berne, Stuttgart, ViennaGoogle Scholar
  30. Serre-Bachet F, Martinelli N, Pignatelli O, Guiot J, Tessier L (1991) Evolution des températures du Nord-Est de l’Italie depuis 1500 A.D. Reconstruction d’après les cernes des arbres. Dendrochronologia 9:213–229Google Scholar
  31. Tessier L (1989) Spatio-temporal analysis of climate tree-ring relationships. New Phytol 11:517–529CrossRefGoogle Scholar
  32. Tranquillini W (1976) Water relations and alpine timberline. Ecological studies. Springer Verlag, Berlin, pp 153–169Google Scholar
  33. Tranquillini W (1979) Physiological ecology of the alpine timberline. Springer Verlag, Berlin, 137 ppGoogle Scholar
  34. Tranquillini W (1982) Frost drought and its ecological significance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, new series, vol. 12B. Springer Verlag, Berlin, pp 379–400Google Scholar
  35. Urbinati C, Carrer M, Sudiro S (1997) Dendroclimatic response variability of Pinus cembra L. in upper timberline forests of Italian Eastern Alps. Dendrochronologia 15:101–117Google Scholar
  36. Wieser G, Gigele T, Pausch H (2005) The carbon budget of an adult Pinus cembra tree at the alpine timberline in the Central Austrian Alps. Eur J For Res 124(1):1–8Google Scholar
  37. Wieser G, Matyssek R, Luzian R, Zwerger P, Pindur P, Oberhuber W, Gruber A (2009) Effects of atmospheric and climate change at the timberline of the Central European Alps. Ann For Sci 66:402–413PubMedCrossRefGoogle Scholar
  38. Wigley TM, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteor 23:201–213CrossRefGoogle Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Mélanie Saulnier
    • 1
  • Jean-Louis Edouard
    • 2
  • Christophe Corona
    • 1
  • Frédéric Guibal
    • 1
  1. 1.IMEP, UMR 6116 CNRS/Aix-Marseille Université, Bâtiment VilleminAix-en-Provence cedex 4France
  2. 2.Centre Camille Jullian, UMR 6573 CNRS, MMSHAix-en-Provence cedex 2France

Personalised recommendations