Annals of Forest Science

, Volume 68, Issue 1, pp 179–187 | Cite as

Molecular cytogenetics and flow cytometry reveal conserved genome organization in Pinus mugo and P. uncinata

  • Faruk Bogunić
  • Sonja Siljak-Yakovlev
  • Edina Muratović
  • Fatima Pustahija
  • Safer Medjedović
Original Paper



The most common representatives of the European mountain pine complex (Pinus mugo s.l.) are P. mugo s.s. and Pinus uncinata.

Materials and methods

Genome characterization of P. mugo and P. uncinata was studied using fluorescence in situ hybridization of 5S and 18–5.8–26S rDNA, fluorochrome banding for heterochromatin characterization, and flow cytometry for DNA content measurement.

Results and discussion

Distribution of 5S and 18S rDNA showed identical patterns for both pine species. In contrast, heterochromatin patterns revealed slight differences in the number and position of bands between these two pines. Genome size analysis of 21 P. mugo populations and one P. uncinata population revealed no significant variations across seven European countries. The mean genome size (2C DNA) for the 21 P. mugo populations was 42.56 ± 0.79 pg, equivalent to 41.62 × 103 Mbp, and ranged from 41.08 to 43.95 pg. No relationships were observed between nuclear DNA content and geographic origin of the studied populations.


Our results reveal that the mechanisms shaping molecular cytogenetic organization and genome size did not profoundly differentiate the genomes of P. mugo and P. uncinata. Observed variations in heterochromatin patterns indicate ongoing divergence processes in the genomes of the two pines.


Genome Size Chromosome Pair rDNA Locus DAPI Signal Fluorochrome Banding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank D. Ballian, B. Frajman, P. Schönswetter, J. Vallès, T. Garnatje and B. Heinze for collecting seed material and O. Robin and O. Catrice for technical assistance. The authors are also indebted to the Federal Ministry of Education and Science of Bosnia and Herzegovina (no. 03-39-5980-194-2/08), CNRS (Centre National de la Recherche Scientifique, France) and the NATO project Science for Peace (no. 983838) for their funding of this project. F.B. gratefully acknowledges support from the NORAGRIC (Department of International Environment Studies, Norwegian University of Life Sciences, Aas, Norway). We are very grateful to Dr. Helen McCombie-Boudry for the English revision of manuscript.


  1. Barros e Silva AE, Guerra M (2010) The meaning of DAPI bands after C-banding and FISH procedures. Biotech Histochem 85(2):115–125. doi: 10.1080/10520290903149596 PubMedCrossRefGoogle Scholar
  2. Bennett MD, Leitch IJ (2005) Genome size: a field in focus. Ann Bot 95:1–6PubMedCrossRefGoogle Scholar
  3. Bogunic F, Muratovic E, Brown SC, Siljak-Yakovlev S (2003) Genome size of five Pinus from Balkan region. Plant Cell Rep 22:59–63PubMedCrossRefGoogle Scholar
  4. Bogunic F, Muratovic E, Siljak-Yakovlev S (2006) Chromosomal differentiation of Pinus heldreichii and Pinus nigra. Ann For Sci 63:267–274CrossRefGoogle Scholar
  5. Bogunic F, Muratovic E, Ballian D, Siljak-Yakovlev S, Brown S (2007) Genome size stability of five subspecies of Pinus nigra Arnold s.l. Env Exp Bot 59:354–360CrossRefGoogle Scholar
  6. Bogunić F, Siljak-Yakovlev S, Muratović E, Ballian D (2011) Different karyotype patterns among allopatric Pinus nigra (Pinaceae) populations revealed by molecular cytogenetics. Plant Biol 13(1):194–200PubMedCrossRefGoogle Scholar
  7. Boratyńska K, Bobowicz MA (2001) Pinus uncinata Ramond taxonomy based on needle characters. Plant Syst Evol 227:183–194CrossRefGoogle Scholar
  8. Boratyńska K, Boratyński A (2007) Taxonomic differences among closely related pines Pinus sylvestris, P. mugo, P. uncinata, P. rotundata and P. rhaetica. Flora 202:555–569Google Scholar
  9. Christensen KI (1987) Taxonomic revision of the Pinus mugo complex and P. x rhaetica (P. mugo x sylvestris) (Pinaceae). Nord J Bot 7:383–408CrossRefGoogle Scholar
  10. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128CrossRefGoogle Scholar
  11. Eckert AJ, Hall BD (2006) Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): phylogenetic tests of fossil-based hypothesis. Mol Phyl Evol 40:166–182CrossRefGoogle Scholar
  12. Galbraith D, Harkins K, Maddox J, Ayres N, Sharma D, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051PubMedCrossRefGoogle Scholar
  13. Gaussen H, Webb DA, Heywood HV (1993) Pinus. In: Tutin GH, Heywood HV, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 1. Cambridge University Press, Cambridge, pp 40–44Google Scholar
  14. Gerlach WL, Dyer TA (1980) Sequence organization of the repeat units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865PubMedCrossRefGoogle Scholar
  15. Gernandt DS, Lopez GG, Garcia SO, Liston A (2005) Phylogeny and classification of Pinus. Taxon 54(1):29–42CrossRefGoogle Scholar
  16. Greilhuber J (1986) Severly distorted Feulgen-DNA amounts in Pinus (Coniferophytina) after nonnadditive fixations as a result of meristematic self-tanning with vacuole contents. Can J Gen Cytol 28:409–415Google Scholar
  17. Grotkopp E, Rejmanek M, Sanderson MJ, Rost TL (2004) Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analysis. Evolution 58:1705–1729PubMedGoogle Scholar
  18. Guerra M, Galvão Bezerra dos Santos K, Barros e Silva AE, Ehrendorfer F (2000) Heterochromatin banding patterns in Rutaceae-Aurantioideae—a case of parallel chromosomal evolution. Am J Bot 87:735–747PubMedCrossRefGoogle Scholar
  19. Hamerník J, Musil I (2007) The Pinus mugo complex—its structuring and general overview of the used nomenclature. J For Sci 53:253–266Google Scholar
  20. Heuertz M, Teufel J, González-Martínez SC, Soto A, Fady B, Alía R, Vendramin GG (2010) Geography determines genetic relationships between species of mountain pines (Pinus mugo complex) in western Europe. J Biogeogr 37:541–556CrossRefGoogle Scholar
  21. Hizume M, Shibata F, Matsuki Y, Garajova M (2002) Chromosome identification and comparative analysis of four Pinus species. Theor Appl Genet 105:491–497PubMedCrossRefGoogle Scholar
  22. Horjales M, Redondo N, Rodríguez M (2003) Cantidades de DNA nuclear en árbóreas y arbustos. NACC Nova Acta Cient Compost Biol 13:20–33Google Scholar
  23. Karvonen P, Karjalainen M, Savolainen O (1993) Ribosomal RNA genes in Scots pine (Pinus sylvestris L.): chromosomal organization and structure. Genetica 88:59–68CrossRefGoogle Scholar
  24. Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82(suppl A):85–94CrossRefGoogle Scholar
  25. Liu Z-I, Zhang D, Hong D-Y, Wang X-R (2003) Chromosomal localization of 5S and 18S-5.8S-25S ribosomal DNA sites in five Asian Pinus species using fluorescence in situ hybridization. Theor Appl Genet 106:198–204PubMedGoogle Scholar
  26. Lubaretz O, Fuchs J, Ahne R, Meister A, Schubert I (1996) Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theor Appl Genet 92:411–416CrossRefGoogle Scholar
  27. Marcysiak K, Boratyński A (2007) Contribution to the taxonomy of Pinus uncinata (Pinaceae) based on cone characters. Plant Syst Evol 264:57–73CrossRefGoogle Scholar
  28. Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms with 2C values for 70 species. Biol Cell 78:41–51PubMedCrossRefGoogle Scholar
  29. Marum L, Loureiro J, Rodriguez E, Santos C, Oliviera MM, Miguel C (2009) Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis. J Biotech 143:288–295CrossRefGoogle Scholar
  30. Monteleone I, Ferrazzini D, Belletti P (2006) Effectiveness of neutral RAPD markers to detect genetic divergence between the subspecies uncinata and mugo of Pinus mugo Turra. Silva Fenn 40:391–406Google Scholar
  31. Morse AM, Peterson DG, Islam-Faridi NM, Smith EK, Magbanua Z, Garcia SA, Kubisiak TL, Amerson AV, Carlson JE, Nelson CD, Davis JM (2009) Evolution of genome size and complexity in Pinus. PLoS ONE 4(2):e4332. doi: 10.1371/journal.pone.0004332 PubMedCrossRefGoogle Scholar
  32. Murray BG (1998) Nuclear DNA amount in gymnosperms. Ann Bot 82(Supplement A):3–15CrossRefGoogle Scholar
  33. Ohri D, Khoshoo TN (1986) Genome size in gymnosperms. Plant Syst Evol 153:119–132CrossRefGoogle Scholar
  34. Prus-Glowacki W, Bujas E, Ratyńska H (1998) Taxonomic position of Pinus uliginosa Neumann as related to other taxa of Pinus mugo complex. Acta Soc Bot Pol 67:269–275Google Scholar
  35. Shibata F, Matsusaki Y, Hizume M (2005) AT-rich sequences containing Arabidopsis-type telomere sequence and their chromosomal distribution in Pinus densiflora. Theor Appl Genet 110:1253–1258PubMedCrossRefGoogle Scholar
  36. Siljak-Yakovlev S, Cerbah M, Coulaud J, Stoian V, Brown SC, Zoldos V, Jelenic S (2002) Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theor Appl Genet 104:505–512PubMedCrossRefGoogle Scholar
  37. Slavov GT, Zhelev P (2004) Allozyme variation, differentiation, and inbreeding in populations of Pinus mugo in Bulgaria. Can J For Res 34:2611–2617CrossRefGoogle Scholar
  38. Sliwinska E, Zielinska E, Jedrzejczyk I (2005) Are seeds suitable for flow cytometric estimation of plant genome size? Cytometry 64(A):72–79PubMedCrossRefGoogle Scholar
  39. Williams C, Joyner K, Auckland L, Johnston S, Price H (2002) Genomic consequences of interspecific Pinus spp. hybridization. Biol J Linn Soc 75:503–508CrossRefGoogle Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Faruk Bogunić
    • 1
    • 3
  • Sonja Siljak-Yakovlev
    • 2
    • 3
  • Edina Muratović
    • 3
  • Fatima Pustahija
    • 1
    • 3
  • Safer Medjedović
    • 1
  1. 1.Faculty of ForestryUniversity of SarajevoSarajevoBosnia and Herzegovina
  2. 2.Univ. Paris-Sud, CNRS, AgroParisTech, UMR 8079, Ecologie, Systématique, EvolutionOrsay CedexFrance
  3. 3.Laboratory for research and protection of endemic resources, Department of Biology, Faculty of Sciences, Zmaja od Bosne 33University of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations