Dairy Science & Technology

, Volume 94, Issue 2, pp 181–193 | Cite as

MilkAMP: a comprehensive database of antimicrobial peptides of dairy origin

  • Jérémie Théolier
  • Ismail Fliss
  • Julie Jean
  • Riadh Hammami
Original Paper

Abstract

The number of identified and characterized bioactive peptides derived from milk proteins is increasing. Although many antimicrobial peptides of dairy origin are now well known, important structural and functional information is still missing or unavailable to potential users. The compilation of such information in one centralized resource such as a database would facilitate the study of the potential of these peptides as natural alternatives for food preservation or to help thwart antibiotic resistance in pathogenic bacteria. To achieve this goal, we established MilkAMP, a new database that contains valuable information on antimicrobial peptides of dairy origin, including microbiological and physicochemical data. The current release of MilkAMP contains 371 entries, including 9 hydrolysates, 299 antimicrobial peptides, 23 peptides predicted as antimicrobial, and 40 non-active peptides. Freely available at http://milkampdb.org/, this database should be useful to help develop uses of biologically active peptides in both the pharmaceutical and food sectors. As more information about antimicrobial peptides becomes available, the database will be expanded and improved accordingly.

Keywords

MilkAMP database Dairy peptides Antimicrobial peptides Milk hydrolysates 

Supplementary material

13594_2013_153_MOESM1_ESM.xlsx (61 kb)
ESM 1(XLSX 61 kb)

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. doi:10.1093/nar/25.17.3389 CrossRefGoogle Scholar
  2. Baranyi M, Thomas U, Pellegrini A (2003) Antibacterial activity of casein-derived peptides isolated from rabbit (Oryctolagus cuniculus) milk. J Dairy Res 70(02):189–197. doi:10.1017/S0022029903006150 CrossRefGoogle Scholar
  3. Bellamy W, Yamauchi K, Wakabayashi H, Takase M, Takakura N, Shimamura S, Tomita M (1994) Antifungal properties of lactoferricin B, a peptide derived from the N-terminal region of bovine lactoferrin. Lett Appl Microbiol 18(4):230–233. doi:10.1111/j.1472-765X.1994.tb00854.x CrossRefGoogle Scholar
  4. Bolscher JGM, van der Kraan MIA, Nazmi K, Kalay H, Grün CH, van’t Hof W, Veerman ECI, Nieuw Amerongen AV (2006) A one-enzyme strategy to release an antimicrobial peptide from the LF ampin-domain of bovine lactoferrin. Peptides 27(1):1–9CrossRefGoogle Scholar
  5. Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254(3):197–215CrossRefGoogle Scholar
  6. Carginale V, Trinchella F, Capasso C, Scudiero R, Riggio M, Parisi E (2004) Adaptive evolution and functional divergence of pepsin gene family. Gene 333:81–90. doi:10.1016/j.gene.2004.02.011 CrossRefGoogle Scholar
  7. Choi J, Sabikhi L, Hassan A, Anand S (2012) Bioactive peptides in dairy products. Int J Dairy Technol 65(1):1–12. doi:10.1111/j.1471-0307.2011.00725.x CrossRefGoogle Scholar
  8. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340 CrossRefGoogle Scholar
  10. Gobbetti M, Stepaniak L, De Angelis M, Corsetti A, Di Cagno R (2002) Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit Rev Food Sci 42(3):223–239. doi:10.1080/10408690290825538 CrossRefGoogle Scholar
  11. Gueguen Y, Garnier J, Robert L, Lefranc MP, Mougenot I, de Lorgeril J, Janech M, Gross PS, Warr GW, Cuthbertson B, Barracco MA, Bulet P, Aumelas A, Yang YS, Bo D, Xiang JH, Tassanakajon A, Piquemal D, Bachere E (2006) PenBase, the shrimp antimicrobial peptide penaeidin database: sequence-based classification and recommended nomenclature. Dev Comp Immunol 30(3):283–288. doi:10.1016/j.dci.2005.04.003 CrossRefGoogle Scholar
  12. Guruprasad K, Reddy B, Pandit M (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–161CrossRefGoogle Scholar
  13. Hammami R, Fliss I (2010) Current trends in antimicrobial agent research: chemo- and bioinformatics approaches. Drug Discov Today 15(13–14):540–546. doi:10.1016/j.drudis.2010.05.002 CrossRefGoogle Scholar
  14. Hammami R, Zouhir A, Naghmouchi K, Ben Hamida J, Fliss I (2008) SciDBMaker: new software for computer-aided design of specialized biological databases. BMC Bioinforma 9(1):121CrossRefGoogle Scholar
  15. Hammami R, Ben Hamida J, Vergoten G, Fliss I (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37:D963–D968. doi:10.1093/nar/gkn655 CrossRefGoogle Scholar
  16. Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I (2010) BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol 10(22)Google Scholar
  17. Haney EF, Nazmi K, Lau F, Bolscher JGM, Vogel HJ (2009) Novel lactoferrampin antimicrobial peptides derived from human lactoferrin. Biochimie 91(1):141–154. doi:10.1016/j.biochi.2008.04.013 CrossRefGoogle Scholar
  18. Hill RD, Lahav E, Givol D (1974) A rennin-sensitive bond in αs1 Β-casein. J Dairy Res 41(01):147–153. doi:10.1017/S0022029900015028 CrossRefGoogle Scholar
  19. Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898Google Scholar
  20. Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511. doi:10.1128/cmr.00056-05 CrossRefGoogle Scholar
  21. Jones FS, Simms HS (1930) The bacterial growth inhibitor (lactenin) of milk. J Exp Med 51(2):327–339. doi:10.1084/jem.51.2.327 CrossRefGoogle Scholar
  22. Kang JH, Lee MK, Kim KL, Hahm KS (1996) Structure–biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. Int J Pept Prot Res 48(4):357–363. doi:10.1111/j.1399-3011.1996.tb00852.x CrossRefGoogle Scholar
  23. Lahov E, Regelson W (1996) Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem Toxicol 34(1):131–145. doi:10.1016/0278-6915(95)00097-6 CrossRefGoogle Scholar
  24. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404 CrossRefGoogle Scholar
  25. López-Expósito I, Recio I (2008) Protective effect of milk peptides: antibacterial and antitumor properties. In: Bösze Z (ed) Bioactive Components of Milk, vol 606, Advances in Experimental Medicine and Biology. Springer, New York, pp 271–294CrossRefGoogle Scholar
  26. López-Expósito I, Gómez-Ruiz JÁ, Amigo L, Recio I (2006) Identification of antibacterial peptides from ovine alphas2-casein. Int Dairy J 16(9):1072–1080CrossRefGoogle Scholar
  27. Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M (2008) BIOPEP database and other programs for processing bioactive peptide sequences. J Aoac Int 91(4):965–980Google Scholar
  28. Muñoz A, Marcos J (2006) Activity and mode of action against fungal phytopathogens of bovine lactoferricin-derived peptides. J Appl Microbiol 101(6):1199–1207. doi:10.1111/j.1365-2672.2006.03089.x CrossRefGoogle Scholar
  29. Park YW (2009) Overview of bioactive components in milk and dairy products. In: Bioactive components in milk and dairy products. Wiley-Blackwell, pp 1–12. doi:10.1002/9780813821504.ch1
  30. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. P Natl Acad Sci USA 85(8):2444–2448CrossRefGoogle Scholar
  31. Piotto SP, Sessa L, Concilio S, Iannelli P (2012) YADAMP: yet another database of antimicrobial peptides. Int J Antimicrob Ag 39(4):346–351. doi:10.1016/j.ijantimicag.2011.12.003 CrossRefGoogle Scholar
  32. Seebah S, Suresh A, Zhuo SW, Choong YH, Chua H, Chuon D, Beuerman R, Verma C (2007) Defensins knowledgebase: a manually curated database and information source focused on the defensins family of antimicrobial peptides. Nucleic Acids Res 35:D265–D268. doi:10.1093/nar/gkl866 CrossRefGoogle Scholar
  33. Seshadri Sundararajan V, Gabere MN, Pretorius A, Adam S, Christoffels A, Lehvaslaiho M, Archer JAC, Bajic VB (2012) DAMPD: a manually curated antimicrobial peptide database. Nucleic Acids Res 40 (Database issue):D1108-1112 doi: 10.1093/nar/gkr1063.Google Scholar
  34. Strøm MB, Svendsen JS, Rekdal Ø (2000) Antibacterial activity of 15-residue lactoferricin derivatives. J Peptide Res 56(5):265–274. doi:10.1034/j.1399-3011.2000.00770.x CrossRefGoogle Scholar
  35. Strøm MB, Stensen W, Svendsen JS, Rekdal Ø (2001) Increased antibacterial activity of 15-residue murine lactoferricin derivatives. J Peptide Res 57(2):127–139. doi:10.1034/j.1399-3011.2001.00806.x CrossRefGoogle Scholar
  36. Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S (2010) CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 38:D774–D780. doi:10.1093/nar/gkp1021 CrossRefGoogle Scholar
  37. Ueta E, Tanida T, Osaki T (2001) A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils. J Peptide Res 57(3):240–249. doi:10.1111/j.1399-3011.2001.00821.x CrossRefGoogle Scholar
  38. van der Kraan MIA, Groenink J, Nazmi K, Veerman ECI, Bolscher JGM, Nieuw Amerongen AV (2004) Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25(2):177–183CrossRefGoogle Scholar
  39. Vogel HJ, Schibli DJ, Jing W, Lohmeier-Vogel EM, Epand RF, Epand RM (2002) Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem Cell Biol 80(1):49–63. doi:10.1139/o01-213 CrossRefGoogle Scholar
  40. Wakabayashi H, Hiratani T, Uchida K, Yamaguchi H (1996) Antifungal spectrum and fungicidal mechanism of an N-terminal peptide of bovine lactoferrin. J Infect Chemother 1(3):185–189. doi:10.1007/bf02350646 CrossRefGoogle Scholar
  41. Wakabayashi H, Matsumoto H, Hashimoto K, Teraguchi S, Takase M, Hayasawa H (1999) N-acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity. Antimicrob Agents Ch 43(5):1267–1269Google Scholar
  42. Wakabayashi H, Takase M, Tomita M (2003) Lactoferricin derived from milk protein lactoferrin. Curr Pharm Design 9(16):1277–1287. doi:10.2174/1381612033454829 CrossRefGoogle Scholar
  43. Wang GS, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937. doi:10.1093/nar/gkn823 CrossRefGoogle Scholar
  44. Waterhouse A, Procter J, Martin D, Clamp M, Barton G (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191CrossRefGoogle Scholar
  45. Whitmore L, Wallace BA (2004) The peptaibol database: a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res 32:D593–D594. doi:10.1093/nar/gkh077 CrossRefGoogle Scholar
  46. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2013

Authors and Affiliations

  • Jérémie Théolier
    • 1
  • Ismail Fliss
    • 1
  • Julie Jean
    • 1
  • Riadh Hammami
    • 1
  1. 1.STELA Dairy Research Centre, Institute of Nutrition and Functional FoodsUniversité LavalQuebecCanada

Personalised recommendations