Advertisement

Dairy Science & Technology

, Volume 91, Issue 5, pp 541–554 | Cite as

Impact of redox potential electrochemical modification and storage conditions on the oxidation reaction prevention in dairy emulsion

  • Sanaz Haratifar
  • Laurent BazinetEmail author
  • Nathalie Manoury
  • Michel Britten
  • Paul Angers
Original Paper

Abstract

Oxidation reactions in milk conclude to negative consequences such as lipid oxidation, undesirable flavors, degradation of vitamins, and changes in microbial flora of milk. The objective of the study was to investigate the effect of electroreduction and storage conditions on an oil/water emulsion made of canola oil and reconstituted skim milk. The electroreduction treatments were carried out at two different anode/cathode voltage differences (0 and 4 V) on a 2% stable oil/water emulsion made of canola oil and skim milk. After each electroreduction treatment, samples of electroreduced emulsion were placed in conditions of storage in regards to headspace (0%, 10%, and 50%), temperature (4 °C and 22 °C) and in the dark for 14 days. The results showed that the electroreduction treatment significantly reduced the redox potential of the emulsion samples to negative values (from +85 to −412 mV) and was also able to decrease their dissolved oxygen (DO) concentration (from 3.8 to 2.5 mg.L−1). The storage conditions of headspace and temperature have had an important impact on the oxidation–reduction potential (ORP) value and the DO value. This study is the first to our knowledge to show that in storage conditions where the gaseous exchanges and especially the oxygen are limited, it is possible to maintain during 14 days a negative ORP in electroreduced oil–water emulsion.

Keywords

Oil/water emulsion Milk Electroreduction Redox potential Dissolved oxygen Storage 

电化学改性和贮藏条件对防止乳体系氧化的作用

摘要 乳发生氧化反应会对乳的质量会产生负面影响,如脂质氧化、不愉快风味物质的产生、维生素损失以及微生物菌群的改变。本文研究了电解还原和贮藏条件对以菜籽油/还原脱脂奶形成的水包油 (O/W) 型乳浊液的影响。电解还原反应是在以2%菜籽油/脱脂粉形成的水包油型乳浊液中通过不同阳极/阴极电压差 (0伏和4伏)来完成的。电解还原处理完后的乳浊液样品放在含有不同顶部空气体积 (0,10和50%) 的包装容器中,在一定的温度(4和20 °C) 和避光条件下保藏14天。实验结果表明:电解还原处理能够将乳浊液的氧化还原电位显著地降低到负值(从+85降低到-412 mV),同时还能降低样品中溶解氧的浓度(从3.8降低到2.5 mg.mL−1)。包装顶部的体积和贮藏的温度能够显著降低氧化还原电位 (ORP) 值和溶解氧 (DO)。本研究证明了在此贮藏条件下气体交换特别是氧气交换被限制,在14天内贮藏过程中有可能使电解还原的水包油型乳浊液维持在负氧化还原电位的情况下。

关键词

水包油型乳剂 乳 电解还原 氧化还原电位 溶解氧 贮藏 

Notes

Acknowledgments

The authors would like to thank Ms. Monica Araya-Farias and Claudia Gonzalez for their technical assistance. The financial supports of the Fonds Québécois de la Recherche sur la Nature et les Technologies and Novalait Inc. are also acknowledged.

References

  1. Amiot J, Fournier S, Lebeuf Y, Paquin P, Simpson R (2002) Composition, propriétés physicochimiques, valeur nutritive, qualité technologique et techniques d’analyse du lait. In: Science et technologie du lait: Transformation du lait. Presses international Polytechnique, MontréalGoogle Scholar
  2. Bazinet L, Ippersiel D, Mahdavi B (2004) Fractionation of whey proteins by bipolar membrane electroacidification. Innov Food Sci Emerging Technol 5:17–25CrossRefGoogle Scholar
  3. Bolduc MP, Bazinet L, Lessard J, Chapuzet JM, Vuillemard JC (2006) Electrochemical modification of the redox potential of pasteurized milk and its evolution during storage. J Agric Food Chem 54:4651–4657CrossRefGoogle Scholar
  4. Borle F, Sieber R, Bosset JO (2001) Photo-oxidation and photoprotection of foods with particular reference to dairy products—an update of a review article (1993–2000). Sci Aliments 21:571–590CrossRefGoogle Scholar
  5. Jacob HE (1970) Redox potential. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 2. Academic, LondonGoogle Scholar
  6. Jensen RG, Ferris AM, Lammi-Keefe CJ (1991) Symposium: milk fat—composition, function and potential for change. J Dairy Sci 74:3228–3243CrossRefGoogle Scholar
  7. Morris JG (2000) The effect of redox potential. In: Lund BM, Baird-Parker TC, Gould GW (eds) The microbiological safety and quality of food, vol 1. Aspen, FrederickGoogle Scholar
  8. Pastushenko V, Matthes HD, Heinrich H (2000) Effect of fat content on the redox potential behaviour of milk. Milchwiss 55:547–549Google Scholar
  9. Schreyer A (2007) Régulation électrochimique du potentiel d’oxydoréduction du lait :Impact des composantes du lait et effet sur sa résistance à l’oxydation après traitement. Ph.D. thesis, Université Laval, QuébecGoogle Scholar
  10. Schreyer A, Britten M, Chapuzet J-M, Lessard J, Bazinet L (2008) Electrochemical modification of the redox potential of different milk products and its evolution during storage. Innov Food Sci Emerg Technol 9:255–264CrossRefGoogle Scholar
  11. Tallec A (1985) Généralités sur l'électrochimie organique et les facteurs expérimentaux. In: Électrochimie organique: Synthèse et mécanisme, Masson, ParisGoogle Scholar
  12. Vahcic N, Palic A, Ritz M (1992) Mathematical evaluation of relationships between copper, iron, ascorbic acid and redox potential. Milchwissenschaft 47:228–230Google Scholar
  13. White JCD, Davies DT (1958) The relation between the chemical composition of milk and the stability of the caseinate complex. I. General introduction, description of samples, methods and composition. J Dairy Res 25:236–255CrossRefGoogle Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sanaz Haratifar
    • 1
  • Laurent Bazinet
    • 1
    Email author
  • Nathalie Manoury
    • 1
  • Michel Britten
    • 1
    • 2
  • Paul Angers
    • 1
  1. 1.Institute of Nutraceuticals and Functional Foods (INAF) and Dairy Research Center (STELA), Department of Food Science and NutritionUniversité LavalQuébecCanada
  2. 2.Centre de Recherche et de Développement sur les AlimentsSaint-HyacintheCanada

Personalised recommendations