Advertisement

Dairy Science & Technology

, Volume 91, Issue 4, pp 457–470 | Cite as

Adventitious dairy Leuconostoc strains with interesting technological and biological properties useful for adjunct starters

  • Luisina Cardamone
  • Andrea Quiberoni
  • Diego Javier Mercanti
  • Maria Emanuela Fornasari
  • Jorge Alberto Reinheimer
  • Daniela Marta GuglielmottiEmail author
Original Paper

Abstract

Some species of Leuconostoc are very important for fermented dairy products, as they contribute to the organoleptic characteristics of butter and cream, and also contribute to the formation of openings in some soft, semi-hard (Edam and Gouda cheeses), many artisanal or in blue-veined cheeses, such as Roquefort. In this study, 14 Leuconostoc strains isolated from cheese and cheese-related products were characterized by genotypic and phenotypic methods, and their technological performance assessed for their potential use as dairy adjunct starters. Phenotypic characterization allowed these strains to be classified to genus level, and genotypic studies (RAPD-PCR and 16S rRNA gene sequencing) identified them to species/subspecies level. Five Leuconostoc strains grew well and acidified milk, and most of them grew even at 8 °C. They showed moderate resistance to heat treatments (30 min at 63 °C) and grew well in the presence of 3% and 4% NaCl, and were significantly inhibited at pH ≤ 5. All strains showed resistance against the bacteriophages tested. In general, the antibacterial properties observed were slight and due to acid production, with the exception of Leuconostoc citreum MB1, which strongly inhibited Listeria monocytogenes ATCC 15313 by the production of a bacteriocin-like compound. All Leuconostoc strains studied were susceptible to gentamicin, tetracycline, erythromycin and ampicillin. Some strains also showed interesting technological and antimicrobial properties, thus being potentially appropriate as adjunct starters in fermented dairy products. This study highlights that adventitious lactic acid bacteria can be a great source of novel strains with interesting technological features that could be used for fermented dairy foods.

Keywords

Leuconostoc Adventitious microflora Soft cheese Adjunct starter 

摘要

外源性明串珠菌作为附属发酵剂的技术和生物特性。有些明串珠菌能赋予奶油特有的感官特性,有助于一些软质和半硬质干酪(伊顿干酪和高达干酪)、手工干酪或者蓝纹干酪(如 Roquefort 干酪)裂纹的形成,因此这些明串珠菌在发酵乳制品中具有非常重要的作用。本研究从干酪和与干酪相关的产品中分离出14株明串珠菌,采用基因型和表型分析的方法对这14株菌进行了鉴定,并且评价了它们在乳制品中作为附属发酵剂的技术特性。表型分析将这些菌株鉴定到属,而采用基因分析 (RAPD-PCR和16S rRNA 基因测序)将它们鉴定到种或亚种。其中5株明串珠菌在酸化的乳中生长性能良好,在 8 ºC 下这5株菌中的大多数还能够生长。这些菌株的耐热性适中 (63 ºC,30 min), 在 3% 和 4% 的 NaCl 中可以很好地生长,但是在 pH ≤ 5 时这些菌株的生长受到了显著地抑制。所有的菌株对噬菌体具有抗性。总体上来讲,在所有的菌株中除了 Leuconostoc citreum MB1外,其他菌株的抗菌特性不是十分明显;由于 Leuconostoc citreum MB1 能产生类似细菌素的化合物,所以对李斯特单胞菌 ATCC 15313 具有很强地抑制作用。所有的明串珠菌对庆大霉素、四环素、红霉素和氨苄青霉素敏感。有些菌株表现出有益的技术特性和抗菌特性,因此,这些菌株有可能成为发酵乳制品的附属发酵剂。本研究认为具有特殊性能的外源性乳酸菌可以成为发酵乳制品中有价值的附属发酵剂。

关键词

明串珠菌属 外源微生物菌群 软质干酪 附属发酵剂 

Notes

Acknowledgements

This work was supported by the Universidad Nacional del Litoral (Santa Fe, Argentina) (Project CAI + D 2009 no. 57–275) and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) (Project PIP no. 112-200801-01206).

References

  1. Aymerich T, Martín B, Garriga M, Vidal-Carou MC, Bover-Cid S, Hugas M (2006) Safety properties and molecular strain typing of lactic acid bacteria from slightly fermented sausages. J Appl Microbiol 100:40–49CrossRefGoogle Scholar
  2. Blom H, Katla T, Holck A, Sletten K, Axelsson L, Holo H (1999) Characterization, production, and purification of leucocin H, a two-peptide bacteriocin from Leuconostoc MF215B. Curr Microbiol 39:43–48CrossRefGoogle Scholar
  3. Bou G, Saleta JL, Sáez Nieto JA, Tomás M, Valdezate S, Sousa D, Lueiro F, Villanueva R, Pereira MJ, Llinares P (2008) Nosocomial outbreaks caused by Leuconostoc mesenteroides subsp. mesenteroides. Emerg Infect Dis 14(6):968–971CrossRefGoogle Scholar
  4. Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149CrossRefGoogle Scholar
  5. Cibik R, Lepage E, Tailliez P (2000) Molecular diversity of Leuconostoc mesenteroides and Leuconostoc citreum isolated from traditional French cheeses as revealed by RAPD fingerprinting, 16S rDNA sequencingand 16S rDNA fragment amplification. Syst Appl Microbiol 23:267–278Google Scholar
  6. Coconnier M-H, Liévin V, Bernet-Camard M-F, Hudault S, Servin A (1997) Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrob Agents Chemother 41:1046–1052Google Scholar
  7. Cogan TM, Jordan KN (1994) Metabolism of Leuconostoc bacteria. J Dairy Sci 77:2704–2717CrossRefGoogle Scholar
  8. Duthoit F, Tessier L, Montel M-C (2005) Diversity, dynamics and activity of bacterial populations in ‘Registered Designation of Origin’ Salers cheese by single-strand conformation polymorphism analysis of 16S rRNA genes. J Appl Microbiol 98:1198–1208CrossRefGoogle Scholar
  9. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106CrossRefGoogle Scholar
  10. European Food Safety Authority (2008) Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. The EFSA Journal 732:1–15Google Scholar
  11. Firmesse O, Alvaro E, Mogenet A, Bresson J-L, Lemée R, Le Ruyet P, Bonhomme C, Lambert D, Andrieux C, Doré J, Corthier G, Furet J-P, Rigottier-Gois L (2008) Fate and effects of Camembert cheese micro-organisms in the human colonic microbiota of healthy volunteers after regular Camembert consumption. Int J Food Microbiol 125:176–181CrossRefGoogle Scholar
  12. Giraffa G, Rossetti L, Neviani E (2000) An evaluation of chelex-based DNA purification protocols for the typing of lactic acid bacteria. J Microbiol Methods 42:175–184CrossRefGoogle Scholar
  13. Giraffa G, Lazzi C, Gatti M, Rossetti L, Mora D, Neviani E (2003) Molecular typing of Lactobacillus delbrueckii of dairy origin by PCR-RFLP of protein coding genes. Int J Food Microbiol 82:163–172CrossRefGoogle Scholar
  14. Hamasaki Y, Ayaki M, Fuchu H, Sugiyama M (2003) Behavior of psychrotrophic lactic acid bacteria isolated from spoiling cooked meat products. Appl Environ Microbiol 69(6):3668–3671CrossRefGoogle Scholar
  15. Hemme D, Foucaud-Sheunemann C (2004) Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Review. Int Dairy J 14:467–494CrossRefGoogle Scholar
  16. Hensyl WR (1994) Bergey’s manual of determinative bacteriology. The Williams and Wilkins Co., LondonGoogle Scholar
  17. Huey B, Hall J (1989) Hypervariable DNA fingerprinting in Escherichia coli. Minisatellite probe from bacteriophage M13. J Bacteriol 171:2528–2532Google Scholar
  18. Klare I, Konstabel C, Müller-Bertling S, Reissbrodt R, Huys G, Vancanneyt M, Swings J, Goossens H, Witte W (2005) Evaluation of new broth media for microdilution antibiotic susceptibility testing of lactobacilli, pediococci, lactococci and bifidobacteria. Appl Environ Microbiol 71:8982–8986CrossRefGoogle Scholar
  19. Kulwichit W, Nilgate S, Chatsuwan T, Krajiw S, Unhasuta C, Chongthaleong A (2007) Accuracies of Leuconostoc phenotypic identification: a comparison of API systems and conventional phenotypic assays. BMC Infect Dis 7:69. doi: 10.1186/1471-2334-7-69 CrossRefGoogle Scholar
  20. Martley FG, Crow VL (1993) Interactions between non-starter microorganisms during cheese manufacture and ripening. Int Dairy J 3:461–483CrossRefGoogle Scholar
  21. Moineau S, Lévesque C (2005) In: Kutler E, Sulakvelidze A (eds) Control of bacteriophages in industrial fermentations, bacteriophages: biology and applications. CRC Press, Boca Ratón, FLGoogle Scholar
  22. Nieto-Arribas P, Seseña S, Poveda JM, Palop L, Cabezas L (2010) Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture. Food Microbiol 27:85–93CrossRefGoogle Scholar
  23. Ogier J-C, Casalta E, Farrokh C, Saïhi A (2008) Safety assessment of dairy microorganisms: the Leuconostoc genus. Int J Food Microbiol 126:286–290CrossRefGoogle Scholar
  24. Quiberoni A, Guglielmotti D, Reinheimer J (2008) New and classical spoilage bacteria causing widespread blowing in Argentinean soft and semihard cheeses. Int J Dairy Technol 61(4):358–363CrossRefGoogle Scholar
  25. Reinheimer JA, Suárez VB, Bailo NB, Zalazar CA (1995) Microbiological and technological characteristics of natural whey cultures for Argentinian hard-cheese production. J Food Prot 58(7):796–799Google Scholar
  26. Rodtong S, Tannock GW (1993) Differentiation of Lactobacillus strains by ribotyping. Appl Environ Microbiol 59:3480–3484Google Scholar
  27. Rojo-Bezares B, Sáenz Y, Poeta P, Zarazaga M, Ruiz-Larrea F, Torres C (2006) Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int J Food Microbiol 111:234–240CrossRefGoogle Scholar
  28. Sánchez JI, Martínez B, Rodríguez A (2005) Rational selection of Leuconostoc strains for mixed starters based on the physiological biodiversity found in raw milk fermentations. Int J Food Microbiol 105:377–387CrossRefGoogle Scholar
  29. Schillinger U, Becker B, Holzapfel WH (1995) Antilisterial activity of carnocin 54, a bacteriocin from Leuconostoc carnosum. Food Microbiol 12:31–37CrossRefGoogle Scholar
  30. Stiles ME (1994) Bacteriocins produced by Leuconostoc species. J Dairy Sci 77:2718–2724CrossRefGoogle Scholar
  31. Svensson U, Christiansson A (1991) Bulletin 263, International Dairy Federation methods for phage monitoring. Brussels, BelgiumGoogle Scholar
  32. Trias R, Badosa E, Montesinos E, Bañeras L (2008) Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. Int J Food Microbiol 127:91–98CrossRefGoogle Scholar
  33. Vauterin L, Vauterin P (1992) Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur Microbiol 1:37–41Google Scholar
  34. Vedamuthu ER (1994) The dairy Leuconostoc: use in dairy products. J Dairy Sci 77:2725–2737CrossRefGoogle Scholar
  35. Vinderola CG, Mocchiutti P, Reinheimer JA (2002) Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products. J Dairy Sci 85:721–729CrossRefGoogle Scholar

Copyright information

© INRA and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Luisina Cardamone
    • 1
  • Andrea Quiberoni
    • 1
  • Diego Javier Mercanti
    • 1
  • Maria Emanuela Fornasari
    • 2
  • Jorge Alberto Reinheimer
    • 1
  • Daniela Marta Guglielmotti
    • 1
    Email author
  1. 1.Facultad de Ingeniería QuímicaInstituto de Lactología Industrial (INLAIN, UNL-CONICET)Santa FeArgentina
  2. 2.Centro di Ricerca per le Produzioni Foraggere e Lattiero-CasearieSettore di Ricerca Lattiero-CasearioLodiItaly

Personalised recommendations