Advertisement

Stoichiometry constraints challenge the potential of agroecological practices for the soil C storage. A review

  • Isabelle BertrandEmail author
  • Valérie Viaud
  • Tanguy Daufresne
  • Sylvain Pellerin
  • Sylvie Recous
Review Article

Abstract

To date, the stoichiometry concept has been poorly used to explore C, N, and P cycles in agroecosystems. As agriculture is now under pressure to reduce the use of synthetic inputs, ecological processes and alternative agricultural practices will become the main regulators of the relationships between C, N, and P and thereby of nutrient availability and C storage in soils. In this paper, we review the ecological theories underpinning the concepts of homeostasis and stoichiometric flexibility, their application to agroecosystems, and how stoichiometry could constraint agroecological practices related to nutrient availability and soil C storage. Our main findings are (1) optimal C:N:P ratios exist at the species level, reflecting a range of ecological strategies and representing a keystone constraint for the coupling of C, N, and P cycles, resulting in canonical ratios at the community level. Stoichiometric flexibility nevertheless exists from the organism level—autotrophs having higher flexibility than heterotrophs—to the community level, depending on assembly rules. (2) Agroecosystems are stoichiometrically constrained especially in the soil compartment, due to the low stoichiometric flexibility of microorganisms at the community level. (3) Agricultural practices such as fertilization decrease N:P ratios in soil surface when total P is considered, while C:N ratios remained constant. (4) Stoichiometry homeostasis constraints for soil C storage require the availability of N and P. They can be supported by agroecological practices that promote nutrient recycling (organic fertilization, permanent soil cover, N fixation). The 45-Tg N and 4.8-Tg P needed to increase the C stock of cropped soils by “4 per mille per year” can be also provided by suppressing nutrient losses. We conclude that two soil compartments should be more investigated to evaluate their potential to bypass stoichiometric constraints and foster C storage while reducing chemical inputs: deep soil horizons and particulate organic matter fraction.

Keywords

Agricultural soils Carbon Nitrogen Organic matter Phosphorus Plants 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3(5):336–340.  https://doi.org/10.1038/ngeo846 CrossRefGoogle Scholar
  2. Altieri MA, Letourneau DK, Davis JR (1983) Developing sustainable agroecosystems. Bioscience 33(1):45–49.  https://doi.org/10.2307/1309244 CrossRefGoogle Scholar
  3. Amougou N, Bertrand I, Machet J-M, Recous S (2011) Quality and decomposition in soil of rhizome, root and senescent leaf from Miscanthus x giganteus, as affected by harvest date and N fertilization. Plant Soil 338(1-2):83–97.  https://doi.org/10.1007/s11104-010-0443-x CrossRefGoogle Scholar
  4. Andersen T (1997) Pelagic nutrient cycles, herbivores as sources and sinks. Springer, Berlin.  https://doi.org/10.1007/978-3-662-03418-7 CrossRefGoogle Scholar
  5. Angst G, John S, Mueller CW, Kogel-Knabner I, Rethemeyer J (2016) Tracing the sources and spatial distribution of organic carbon in subsoils using a multi-biomarker approach. Sci Rep 6.  https://doi.org/10.1038/srep29478
  6. Autret B, Mary B, Chenu C, Balabane M, Girardin C, Bertrand M, Grandeau G, Beaudoin N (2016) Alternative arable cropping systems: a key to increase soil organic carbon storage? Results from a 16 year field experiment. Agric Ecosyst Environ 232:150–164CrossRefGoogle Scholar
  7. Baldock JA, Skjemstad JO (1999) Role of the mineral phase for stabilization of organic matter in soils and sediments. Abstr Pap Am Chem Soc 217:U838–U838Google Scholar
  8. Balesdent J, Besnard E, Arrouays D, Chenu C (1998) The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence. Plant Soil 201(1):49–57.  https://doi.org/10.1023/a:1004337314970 CrossRefGoogle Scholar
  9. Balesdent J, Basile-Doelsch I, Chadoeuf J, Cornu S, Fekiacova Z, Fontaine S, Guenet B, Hatte C (2017) Turnover of deep organic carbon in cultivated soils: an estimate from a review of isotope data. Biotechnol Agron Soc 21(3):181–190Google Scholar
  10. Balesdent J, Basile-Doelsch I, Chadoeuf J, Cornu S, Derrien D, Fekiacova Z, Hatte C (2018) Atmosphere-soil carbon transfer as a function of soil depth. Nature 559(7715):599.  https://doi.org/10.1038/s41586-018-0328-3 CrossRefPubMedGoogle Scholar
  11. Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen E, Prieur L, Justes E (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron Sustain Dev 35(3):911–935.  https://doi.org/10.1007/s13593-014-0277-7 CrossRefGoogle Scholar
  12. Besnard E, Chenu C, Robert M (2001) Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils. Environ Pollut 112(3):329–337.  https://doi.org/10.1016/s0269-7491(00)00151-2 CrossRefPubMedGoogle Scholar
  13. Bol R, Julich D, Brödlin D, Siemens J, Kaiser K, Dippold MA, Spielvogel S, Zilla T, Mewes D, von Blanckenburg F, Puhlmann H, Holzmann S, Weiler M, Amelung W, Lang F, Kuzyakov Y, Feger KH, Gottselig N, Klumpp E, Missong A, Winkelmann C, Uhlig D, Sohrt J, von Wilpert K, Wu B, Hagedorn F (2016) Dissolved and colloidal phosphorus fluxes in forest ecosystems—an almost blind spot in ecosystem research. J Plant Nutr Soil Sci 179:425–438.  https://doi.org/10.1002/jpln.201600079 CrossRefGoogle Scholar
  14. Bouwman AF, Beusen AHW, Lassaletta L, van Apeldoorn DF, van Grinsven HJM, Zhang J, van Ittersum MK (2017) Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci Rep 7:11.  https://doi.org/10.1038/srep40366 CrossRefGoogle Scholar
  15. Carrillo Y, Ball BA, Molina M (2016) Stoichiometric linkages between plant litter, trophic interactions and nitrogen mineralization across the litter–soil interface. Soil Biol Biochem 92:102–110CrossRefGoogle Scholar
  16. Chabbi A, Lehmann J, Ciais P, Loescher HW, Cotrufo MF, Don A, SanClements M, Schipper L, Six J, Smith P, Rumpel C (2017) Aligning agriculture and climate policy. Nat Clim Chang 7(5):307–309CrossRefGoogle Scholar
  17. Chen MP, Graedel TE (2016) A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob Environ Change-Human Policy Dimens 36:139–152.  https://doi.org/10.1016/j.gloenvcha.2015.12.005 CrossRefGoogle Scholar
  18. Chenu C, Angers DA, Barre P, Derrien D, Arrouays D, Balesdent J (2019) Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations. Soil Tillage Res 188:41–52.  https://doi.org/10.1016/j.still.2018.04.011 CrossRefGoogle Scholar
  19. Cherif M, Loreau M (2013) Plant–herbivore–decomposer stoichiometric mismatches and nutrient cycling in ecosystems. Proc R Soc B Biol Sci 280(1754).  https://doi.org/10.1098/rspb.2012.2453 CrossRefGoogle Scholar
  20. Cleveland CC, Liptzin D (2007) C : N : P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85(3):235–252.  https://doi.org/10.1007/s10533-007-9132-0 CrossRefGoogle Scholar
  21. Coppens F, Garnier P, Findeling A, Merckx R, Recous S (2007) Decomposition of mulched versus incorporated crop residues: modelling with PASTIS clarifies interactions between residue quality and location. Soil Biol Biochem 39(9):2339–2350CrossRefGoogle Scholar
  22. Cordell D, Neset TSS (2014) Phosphorus vulnerability: a qualitative framework for assessing the vulnerability of national and regional food systems to the multidimensional stressors of phosphorus scarcity. Glob Environ Change-Human Policy Dimens 24:108–122.  https://doi.org/10.1016/j.gloenvcha.2013.11.005 CrossRefGoogle Scholar
  23. Danger M, Daufresne T, Lucas F, Pissard S, Lacroix G (2008) Does Liebig’s law of the minimum scale up from species to communities? Oikos 117(11):1741–1751.  https://doi.org/10.1111/j.1600-0706.2008.16793.x CrossRefGoogle Scholar
  24. Daufresne T, Loreau M (2001) Plant-herbivore interactions and ecological stoichiometry: when do herbivores determine plant nutrient limitation? Ecol Lett 4(3):196–206.  https://doi.org/10.1046/j.1461-0248.2001.00210.x CrossRefGoogle Scholar
  25. De Stefano A, Jacobson MG (2017) Soil carbon sequestration in agroforestry systems: a meta-analysis. Agrofor Syst.  https://doi.org/10.1007/s10457-017-0147-9
  26. Dimassi B, Mary B, Wylleman R, Labreuche J, Couture D, Piraux F, Cohan JP (2014) Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agric Ecosyst Environ 188:134–146.  https://doi.org/10.1016/j.agee.2014.02.014 CrossRefGoogle Scholar
  27. Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella CA (2002) Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron J 94(1):153–171CrossRefGoogle Scholar
  28. Droop MR (1974) The nutrient status of algal cells in continuous culture. J Mar Biol Assoc UK 54:825–855CrossRefGoogle Scholar
  29. Duru M, Therond O, Martin G, Martin-Clouaire R, Magne MA, Justes E, Journet EP, Aubertot JN, Savary S, Bergez JE, Sarthou J (2015) How to implement biodiversity-based agriculture to enhance ecosystem services: a review. Agron Sustain Dev 35(4):1259–1281.  https://doi.org/10.1007/s13593-015-0306-1 CrossRefGoogle Scholar
  30. Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996) Organism size, life history, and N:P stoichiometry. Bioscience 46(9):674–684.  https://doi.org/10.2307/1312897 CrossRefGoogle Scholar
  31. Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408(6812):578–580.  https://doi.org/10.1038/35046058 CrossRefPubMedGoogle Scholar
  32. Fabrizzi KP, Moron A, Garcia FO (2003) Soil carbon and nitrogen organic fractions in degraded vs. non-degraded mollisols in Argentina. Soil Sci Soc Am J 67(6):1831–1841CrossRefGoogle Scholar
  33. Fan JL, McConkey B, Wang H, Janzen H (2016) Root distribution by depth for temperate agricultural crops. Field Crops Res 189:68-74.  https://doi.org/10.1016/j.fcr.2016.02.013 CrossRefGoogle Scholar
  34. Fang C, Moncrieff JB (2005) The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant Soil 268(1):243–253CrossRefGoogle Scholar
  35. Fanin N, Fromin N, Bertrand I (2016a) Functional breadth and home-field advantage generate functional differences among soil microbial decomposers. Ecology 97(4):1023–1037.  https://doi.org/10.1890/15-1263.1 CrossRefPubMedGoogle Scholar
  36. Fanin N, Moorhead D, Bertrand I (2016b) Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradient. Biogeochemistry 129(1-2):21–36.  https://doi.org/10.1007/s10533-016-0217-5 CrossRefGoogle Scholar
  37. Finn D, Page K, Catton K, Kienzle M, Robertson F, Armstrong R, Dalal R (2016) Ecological stoichiometry controls the transformation and retention of plant-derived organic matter to humus in response to nitrogen fertilisation. Soil Biol Biochem 99:117–127.  https://doi.org/10.1016/j.soilbio.2016.05.006 CrossRefGoogle Scholar
  38. Franzluebbers AJ, Stuedemann JA (2008) Early response of soil organic fractions to tillage and integrated crop-livestock production. Soil Sci Soc Am J 72(3):613–625.  https://doi.org/10.2136/sssaj2007.0121 CrossRefGoogle Scholar
  39. Frossard E, Buchmann N, Bünemann EK, Kiba DI, Lompo F, Oberson A, Tamburini F, Traoré OY (2016) Soil properties and not inputs control carbon: nitrogen: phosphorus ratios in cropped soils in the long term. Soil 2(1):83–99.  https://doi.org/10.5194/soil-2-83-2016 CrossRefGoogle Scholar
  40. Gill RA, Burke IC (2002) Influence of soil depth on the decomposition of Bouteloua gracilis roots in the shortgrass steppe. Plant Soil 241(2):233–242CrossRefGoogle Scholar
  41. Gliessman SR (2006) Agrocecology. The ecology of sustainable food systems, Second edn. CRCGoogle Scholar
  42. Gonzalez-Chavez MDA, Aitkenhead-Peterson JA, Gentry TJ, Zuberer D, Hons F, Loeppert R (2010) Soil microbial community, C, N, and P responses to long-term tillage and crop rotation. Soil Tillage Res 106(2):285–293.  https://doi.org/10.1016/j.still.2009.11.008 CrossRefGoogle Scholar
  43. Gregorich EG, Carter MR, Angers DA, Drury CF (2009) Using a sequential density and particle-size fractionation to evaluate carbon and nitrogen storage in the profile of tilled and no-till soils in eastern Canada. Can J Soil Sci 89(3):255–267CrossRefGoogle Scholar
  44. Gusewell S (2004) N : P ratios in terrestrial plants: variation and functional significance. New Phytol 164(2):243–266.  https://doi.org/10.1111/j.1469-8137.2004.01192.x CrossRefGoogle Scholar
  45. Gusewell S, Gessner MO (2009) N : P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23(1):211–219.  https://doi.org/10.1111/j.1365-2435.2008.01478.x CrossRefGoogle Scholar
  46. Ha KV, Marschner P, Bunemann EK (2008) Dynamics of C, N, P and microbial community composition in particulate soil organic matter during residue decomposition. Plant Soil 303(1-2):253–264.  https://doi.org/10.1007/s11104-007-9504-1 CrossRefGoogle Scholar
  47. Hedlund K, Öhrn MS (2000) Tritrophic interactions in a soil community enhance decomposition rates. Oikos 88(3):585–591.  https://doi.org/10.1034/j.1600-0706.2000.880315.x CrossRefGoogle Scholar
  48. Hufnagl-Eichiner S, Wolf SA, Drinkwater LE (2011) Assessing social–ecological coupling: agriculture and hypoxia in the Gulf of Mexico. Glob Environ Chang 21(2):530–539CrossRefGoogle Scholar
  49. Hussain I, Olson KR, Ebelhar SA (1999) Long-term tillage effects on soil chemical properties and organic matter fractions. Soil Sci Soc Am J 63(5):1335–1341CrossRefGoogle Scholar
  50. Jacobs A, Rauber R, Ludwig B (2009) Impact of reduced tillage on carbon and nitrogen storage of two Haplic Luvisols after 40 years. Soil Tillage Res 102(1):158–164.  https://doi.org/10.1016/j.still.2008.08.012 CrossRefGoogle Scholar
  51. Jagadamma S, Lal R (2010) Distribution of organic carbon in physical fractions of soils as affected by agricultural management. Biol Fertil Soils 46(6):543–554.  https://doi.org/10.1007/s00374-010-0459-7 CrossRefGoogle Scholar
  52. Jiao F, Wen ZM, An SS, Yuan Z (2013) Successional changes in soil stoichiometry after land abandonment in Loess Plateau, China. Ecol Eng 58:249–254.  https://doi.org/10.1016/j.ecoleng.2013.06.036 CrossRefGoogle Scholar
  53. Justes E, Mary B, Nicolardot B (2009) Quantifying and modelling C and N mineralization kinetics of catch crop residues in soil: parameterization of the residue decomposition module of STICS model for mature and non mature residues. Plant Soil 325(1-2):171–185.  https://doi.org/10.1007/s11104-009-9966-4 CrossRefGoogle Scholar
  54. Kallenbach C, Grandy AS (2011) Controls over soil microbial biomass responses to carbon amendments in agricultural systems: a meta-analysis. Agric Ecosyst Environ 144(1):241–252.  https://doi.org/10.1016/j.agee.2011.08.020 CrossRefGoogle Scholar
  55. Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:13630.  https://doi.org/10.1038/ncomms13630 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kell DB (2011) Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Ann Bot 108(3):407–418.  https://doi.org/10.1093/aob/mcr175 CrossRefGoogle Scholar
  57. Kell DB (2012) Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how. Philos Trans R Soc B: Biol Sci 367(1595):1589–1597CrossRefGoogle Scholar
  58. Khan KS, Mack R, Castillo X, Kaiser M, Joergensen RG (2016) Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 271:115–123.  https://doi.org/10.1016/j.geoderma.2016.02.019 CrossRefGoogle Scholar
  59. Kingery WL, Wood CW, Williams JC (1996) Tillage and amendment effects on soil carbon and nitrogen mineralization and phosphorus release. Soil Tillage Res 37(4):239–250.  https://doi.org/10.1016/0167-1987(96)01009-4 CrossRefGoogle Scholar
  60. Kirkby CA, Kirkegaard JA, Richardson AE, Wade LJ, Blanchard C, Batten G (2011) Stable soil organic matter: a comparison of C:N:P:S ratios in Australian and other world soils. Geoderma 163(3-4):197–208.  https://doi.org/10.1016/j.geoderma.2011.04.010 CrossRefGoogle Scholar
  61. Kirkby CA, Richardson AE, Wade LJ, Conyers M, Kirkegaard JA (2016) Inorganic nutrients increase humification efficiency and C-sequestration in an annually cropped soil. PLoS One 11(5).  https://doi.org/10.1371/journal.pone.0153698 CrossRefGoogle Scholar
  62. Klausmeier CA, Litchman E, Daufresne T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429(6988):171CrossRefGoogle Scholar
  63. Lal R (2016) Feeding 11 billion on 0.5 billion hectare of area under cereal crops. Food Energy Secur 5(4):239–251.  https://doi.org/10.1002/fes3.99 CrossRefGoogle Scholar
  64. Lassaletta L, Billen G, Garnier J, Bouwman L, Velazquez E, Mueller ND, Gerber JS (2016) Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ Res Lett 11(9).  https://doi.org/10.1088/1748-9326/11/9/095007 CrossRefGoogle Scholar
  65. Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60–68.  https://doi.org/10.1038/nature16069 CrossRefPubMedGoogle Scholar
  66. Lemaire G, Jeuffroy MH, Gastal F (2008) Diagnosis tool for plant and crop N status in vegetative stage theory and practices for crop N management. Eur J Agron 28(4):614–624.  https://doi.org/10.1016/j.eja.2008.01.005 CrossRefGoogle Scholar
  67. Li X, Wang H, Gan SH, Jiang DQ, Tian GM, Zhang ZJ (2013) Eco-stoichiometric alterations in paddy soil ecosystem driven by phosphorus application. PLoS One 8(5).  https://doi.org/10.1371/journal.pone.0061141 CrossRefGoogle Scholar
  68. Li C, Zhao L, Sun P, Zhao F, Kang D, Yang G, Han X, Feng Y, Ren G (2016) Deep soil C, N, and P stocks and stoichiometry in response to land use patterns in the loess hilly region of China. PLoS One 11(7):e0159075CrossRefGoogle Scholar
  69. Liang C, Schimel JP, Jastrow JD (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2(8).  https://doi.org/10.1038/nmicrobiol.2017.105
  70. Lilienfein J, Wilcke W (2003) Element storage in native, agri-, and silvicultural ecosystems of the Brazilian savanna—I. Biomass, carbon, nitrogen, phosphorus, and sulfur. Plant Soil 254(2):425–442.  https://doi.org/10.1023/a:1025579932395 CrossRefGoogle Scholar
  71. Loladze I, Elser JJ (2011) The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecol Lett 14(3):244–250CrossRefGoogle Scholar
  72. Loreau M (1998) Ecosystem development explained by competition within and between material cycles. Proc Royal Soc B-Biol Sci 265(1390):33–38.  https://doi.org/10.1098/rspb.1998.0260 CrossRefGoogle Scholar
  73. Loucks OL (1977) Emergence of research on agro-ecosystems. Annu Rev Ecol Syst 8:173–192.  https://doi.org/10.1146/annurev.es.08.110177.001133 CrossRefGoogle Scholar
  74. Luo ZK, Wang EL, Sun OJ (2010) Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosyst Environ 139(1-2):224–231.  https://doi.org/10.1016/j.agee.2010.08.006 CrossRefGoogle Scholar
  75. Lynch JP, Wojciechowski T (2015) Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot 66(8):2199–2210.  https://doi.org/10.1093/jxb/eru508 CrossRefGoogle Scholar
  76. Makino W, Cotner JB, Sterner RW, Elser JJ (2003) Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C : N : P stoichiometry. Funct Ecol 17(1):121–130.  https://doi.org/10.1046/j.1365-2435.2003.00712.x CrossRefGoogle Scholar
  77. Malezieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29(1):43–62.  https://doi.org/10.1051/agro:2007057 CrossRefGoogle Scholar
  78. Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010) Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Monogr 80(1):89–106.  https://doi.org/10.1890/09-0179.1 CrossRefGoogle Scholar
  79. McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C : N : P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85(9):2390–2401.  https://doi.org/10.1890/03-0351 CrossRefGoogle Scholar
  80. Mooshammer M, Wanek W, Hammerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2014) Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat Commun 5.  https://doi.org/10.1038/ncomms4694
  81. Murty D, Kirschbaum MUF, McMurtrie RE, McGilvray A (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Chang Biol 8(2):105–123.  https://doi.org/10.1046/j.1354-1013.2001.00459.x CrossRefGoogle Scholar
  82. Odum EP (1969) Strategy of ecosystem developement. Science 164(3877):262.  https://doi.org/10.1126/science.164.3877.262 CrossRefPubMedGoogle Scholar
  83. Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Yang YH (2017) Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe. Glob Chang Biol 23(12):5249–5259.  https://doi.org/10.1111/gcb.13789 CrossRefPubMedGoogle Scholar
  84. Penuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013) Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4.  https://doi.org/10.1038/ncomms3934
  85. Perveen N, Barot S, Maire V, Cotrufo MF, Shahzad T, Blagodatskaya E, Stewart CE, Ding WX, Siddiq MR, Dimassi B, Mary B, Fontaine S (2019) Universality of priming effect: an analysis using thirty five soils with contrasted properties sampled from five continents. Soil Biol Biochem 134:162–171.  https://doi.org/10.1016/j.soilbio.2019.03.027 CrossRefGoogle Scholar
  86. Poeplau C, Zopf D, Greiner B, Geerts R, Korvaar H, Thumm U, Don M, Heidkamp A, Flessa H (2018) Why does mineral fertilization increase soil carbon stocks in temperate grasslands? Agric Ecosyst Environ 265:144–155.  https://doi.org/10.1016/j.agee.2018.06.003 CrossRefGoogle Scholar
  87. Poulton P, Johnston J, Macdonald A, White R, Powlson D (2018) Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: evidence from long-term experiments at Rothamsted Research, United Kingdom. Glob Chang Biol 24(6):2563–2584.  https://doi.org/10.1111/gcb.14066 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Pries CEH, Sulman BN, West C, O'Neill C, Poppleton E, Porras RC, Castanha C, Zhu B, Wiedemeier DB, Torn MS (2018) Root litter decomposition slows with soil depth. Soil Biol Biochem 125:103–114.  https://doi.org/10.1016/j.soilbio.2018.07.002 CrossRefGoogle Scholar
  89. Quigg A, Finkel ZV, Irwin AJ, Rosenthal Y, Ho TY, Reinfelder JR, Schofield O, Morel FMM, Falkowski PG (2003) The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425(6955):291–294.  https://doi.org/10.1038/nature01953 CrossRefPubMedGoogle Scholar
  90. Recous S, Lashermes G, Bertrand I, Duru M, Pellerin S (2019) C–N–P decoupling processes linked to arable cropping management systems in relation with intensification of production. In: Agroecosystem Diversity. Elsevier, pp 35–53.  https://doi.org/10.1016/B978-0-12-811050-8.00003-0 CrossRefGoogle Scholar
  91. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46(3):230A–2221AGoogle Scholar
  92. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A 101(30):11001–11006.  https://doi.org/10.1073/pnas.0403588101 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Reiners WA (1986) Complementary models for ecosystems. Am Nat 127(1):59–73CrossRefGoogle Scholar
  94. Richardson AE, Kirkby CA, Banerjee S, Kirkegaard JA (2014) The inorganic nutrient cost of building soil carbon. Carbon Management 5(3):265–268CrossRefGoogle Scholar
  95. Ringeval B, Nowak B, Nesme T, Delmas M, Pellerin S (2014) Contribution of anthropogenic phosphorus to agricultural soil fertility and food production. Glob Biogeochem Cycles 28(7):743–756.  https://doi.org/10.1002/2014gb004842 CrossRefGoogle Scholar
  96. Rumpel C, Kogel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338(1-2):143–158.  https://doi.org/10.1007/s11104-010-0391-5 CrossRefGoogle Scholar
  97. Salome C, Nunan N, Pouteau V, Lerch TZ, Chenu C (2010) Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob Chang Biol 16(1):416–426.  https://doi.org/10.1111/j.1365-2486.2009.01884.x CrossRefGoogle Scholar
  98. Sardans J, Penuelas J (2012) The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol 160(4):1741–1761.  https://doi.org/10.1104/pp.112.208785 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Sardans J, Rivas-Ubach A, Penuelas J (2012) The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspect Plant Ecol Evol Syst 14(1):33–47.  https://doi.org/10.1016/j.ppees.2011.08.002 CrossRefGoogle Scholar
  100. Sauvadet M, Chauvat M, Cluzeau D, Maron PA, Villenave C, Bertrand I (2016) The dynamics of soil micro-food web structure and functions vary according to litter quality. Soil Biol Biochem 95:262–274.  https://doi.org/10.1016/j.soilbio.2016.01.003 CrossRefGoogle Scholar
  101. Schade JD, Espeleta JF, Klausmeier CA, McGroddy ME, Thomas SA, Zhang L (2005) A conceptual framework for ecosystem stoichiometry: balancing resource supply and demand. Oikos 109(1):40–51CrossRefGoogle Scholar
  102. Schrumpf M, Kaiser K, Schulze ED (2014) Soil organic carbon and total nitrogen gains in an old growth deciduous forest in Germany. PLoS One 9(2):8.  https://doi.org/10.1371/journal.pone.0089364 CrossRefGoogle Scholar
  103. Sequeira CH, Alley MM, Jones BP (2011) Evaluation of potentially labile soil organic carbon and nitrogen fractionation procedures. Soil Biol Biochem 43(2):438–444.  https://doi.org/10.1016/j.soilbio.2010.11.014 CrossRefGoogle Scholar
  104. Shahzad T, Rashid MI, Maire V, Barot S, Perveen N, Alvarez G, Mougin C, Fontaine S (2018) Root penetration in deep soil layers stimulates mineralization of millennia-old organic carbon. Soil Biol Biochem 124:150–160.  https://doi.org/10.1016/j.soilbio.2018.06.010 CrossRefGoogle Scholar
  105. Sistla SA, Schimel JP (2012) Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytol 196(1):68–78.  https://doi.org/10.1111/j.1469-8137.2012.04234.x CrossRefPubMedGoogle Scholar
  106. Soussana JF, Lemaire G (2014) Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric Ecosyst Environ 190:9–17CrossRefGoogle Scholar
  107. Spargo JT, Cavigelli MA, Mirsky SB, Maul JE, Meisinger JJ (2011) Mineralizable soil nitrogen and labile soil organic matter in diverse long-term cropping systems. Nutr Cycl Agroecosyst 90(2):253–266.  https://doi.org/10.1007/s10705-011-9426-4 CrossRefGoogle Scholar
  108. Spohn M (2015) Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio. Biogeosciences 12(3):817–823.  https://doi.org/10.5194/bg-12-817-2015 CrossRefGoogle Scholar
  109. Sterner RW (1990) The ratio of nitrogen to phosphorus resupplied by herbivores: zooplankton and the algal competitive arena. Am Nat 136(2):209–229CrossRefGoogle Scholar
  110. Sterner RW, Elser J (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, PrincetonGoogle Scholar
  111. Tassin J (2012) Is an agrosystem an ecosystem? Cahiers Agricultures 21(1):57–63.  https://doi.org/10.1684/agr.2012.0541 CrossRefGoogle Scholar
  112. Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010) Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry 98(1-3):139–151.  https://doi.org/10.1007/s10533-009-9382-0 CrossRefGoogle Scholar
  113. Tiessen H, Stewart JWB (1983) Particle-size fractions and their use in studies of soil organic matter. 2. Cultivation effects on organic matter composition in size fractions. Soil Sci Soc Am J 47(3):509–514CrossRefGoogle Scholar
  114. Tiessen H, Stewart JWB, Bettany JR (1982) Cultivation effects on the amounts and concentration of carbon, nitrogen and phosphorus in grassland soils. Agron J 74(5):831–835CrossRefGoogle Scholar
  115. Tipping E, Somerville CJ, Luster J (2016) The C: N: P: S stoichiometry of soil organic matter. Biogeochemistry 130(1-2):117–131.  https://doi.org/10.1007/s10533-016-0247-z CrossRefGoogle Scholar
  116. Tischer A, Potthast K, Hamer U (2014) Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia 175(1):375–393.  https://doi.org/10.1007/s00442-014-2894-x CrossRefPubMedGoogle Scholar
  117. Tracy PW, Westfall DG, Elliott ET, Peterson GA, Cole CV (1990) Carbon, nitrogen, phosphorus and sulfur mineralization in plow and no-till cultivation. Soil Sci Soc Am J 54(2):457–461CrossRefGoogle Scholar
  118. Trinsoutrot I, Recous S, Bentz B, Lineres M, Cheneby D, Nicolardot B (2000) Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions. Soil Sci Soc Am J 64(3):918–926.  https://doi.org/10.2136/sssaj2000.643918x CrossRefGoogle Scholar
  119. Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400(6744):525–531.  https://doi.org/10.1038/22941 CrossRefGoogle Scholar
  120. Uselman SM, Qualls RG, Lilienfein J (2007) Contribution of root vs. leaf litter to dissolved organic carbon leaching through soil. Soil Sci Soc Am J 71(5):1555–1563.  https://doi.org/10.2136/sssaj2006.0386 CrossRefGoogle Scholar
  121. Uselman SM, Qualls RG, Lilienfein J (2012) Quality of soluble organic C, N, and P produced by different types and species of litter: root litter versus leaf litter. Soil Biol Biochem 54:57–67.  https://doi.org/10.1016/j.soilbio.2012.03.021 CrossRefGoogle Scholar
  122. van Groenigen JW, van Kessel C, Hungate BA, Oenema O, Powlson DS, van Groenigen KJ (2017) Sequestering soil organic carbon: a nitrogen dilemma. Environ Sci Technol 51(9):4738–4739.  https://doi.org/10.1021/acs.est.7b01427 CrossRefPubMedGoogle Scholar
  123. Vertes F, Delaby L, Klumpp K, Bloor J (2019) C-N-P uncoupling in grazed grasslands and environmental implications of management intensification. Agroecosyst Divers.  https://doi.org/10.1016/b978-0-12-811050-8.00002-9 CrossRefGoogle Scholar
  124. Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20(1):5–15.  https://doi.org/10.1890/08-0127.1 CrossRefPubMedGoogle Scholar
  125. Wander MM, Bidart MG (2000) Tillage practice influences on the physical protection, bioavailability and composition of particulate organic matter. Biol Fertil Soils 32(5):360–367.  https://doi.org/10.1007/s003740000260 CrossRefGoogle Scholar
  126. Wyngaard N, Vidaurreta A, Echeverria HE, Picone LI (2013) Dynamics of phosphorus and carbon in the soil particulate fraction under different management practices. Soil Sci Soc Am J 77(5):1584–1590.  https://doi.org/10.2136/sssaj2013.04.0137 CrossRefGoogle Scholar
  127. Xu XF, Thornton PE, Post WM (2013) A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr 22(6):737–749.  https://doi.org/10.1111/geb.12029 CrossRefGoogle Scholar
  128. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci 96(4):1463–1468.  https://doi.org/10.1073/pnas.96.4.1463 CrossRefPubMedGoogle Scholar
  129. Yu QA, Elser JJ, He NP, Wu HH, Chen QS, Zhang GM, Han XG (2011) Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia 166(1):1–10.  https://doi.org/10.1007/s00442-010-1902-z CrossRefPubMedGoogle Scholar
  130. Yuan ZY, Chen HYH (2015) Negative effects of fertilization on plant nutrient resorption. Ecology 96(2):373–380.  https://doi.org/10.1890/14-0140.1 CrossRefPubMedGoogle Scholar
  131. Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Penuelas J, Richter A, Sardans J, Wanek W (2015) The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol Monogr 85(2):133–155.  https://doi.org/10.1890/14-0777.1.sm CrossRefGoogle Scholar
  132. Zhao FZ, Sun J, Ren CJ, Kang D, Deng J, Han XH, Yang GH, Feng YZ, Ren GX (2015) Land use change influences soil C, N, and P stoichiometry under ‘Grain-to-Green Program’ in China. Sci Rep 5.  https://doi.org/10.1038/srep10195
  133. Ziadi N, Belanger G, Cambouris AN, Tremblay N, Nolin MC, Claessens A (2007) Relationship between P and N concentrations in corn. Agron J 99(3):833–841.  https://doi.org/10.2134/agronj2006.0199 CrossRefGoogle Scholar
  134. Zinn YL, Marrenjo GJ, Silva CA (2018) Soil C:N ratios are unresponsive to land use change in Brazil: a comparative analysis. Agric Ecosyst Environ 255:62–72.  https://doi.org/10.1016/j.agee.2017.12.019 CrossRefGoogle Scholar
  135. Zomer RJ, Neufeldt H, Xu JC, Ahrends A, Bossio D, Trabucco A, van Noordwijk M, Wang MC (2016) Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci Rep 6:12.  https://doi.org/10.1038/srep29987 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Eco&Sols, INRA, Univ. Montpellier, CIRAD, IRDMontpellierFrance
  2. 2.UMR SAS, INRA, Agrocampus OuestRennesFrance
  3. 3.INRA, Bordeaux Sciences AgroUniv. BordeauxBordeauxFrance
  4. 4.FARE Laboratory, INRAUniv. Reims Champagne-ArdenneReimsFrance

Personalised recommendations