Work-related information needed by farmers for changing to sustainable cropping practices

  • Elisa Delecourt
  • Alexandre JoannonEmail author
  • Jean-Marc Meynard
Research Article


Farmers are being urged to change their practices in order to reduce agricultural pollution. These changes may affect working times and organization, and farmers often mention this to explain the difficulties they have in adopting a new practice. But little is known about the work-related changes (e.g., working time, organization, skills) engendered by a change of farming practice, or about the information that farmers need for deciding on and implementing a new practice. In order to design tools to help farmers when adopting more agroecological practices, the objective of this paper is to identify what work-related information is useful to them for changing their practices. We interviewed 16 farmers in France and we then characterized the types of work-related information they had applied. We focused both on changes that were systemic (reducing tillage or diversifying crops) or less systemic (low-volume spraying or mechanical weeding). We performed a qualitative analysis with an iterative method, alternating between gathering data from the farmers and theorizing about what happens on the work front. We then performed a quantitative analysis of the results, based on chi-squared tests, to identify which factors influence farmers’ work-related information needs. Our findings showed, for the first time, that farmers apply a wide range of information about work changes, concerning performance of new operations, resources used, work organization and competition between activities, and the arduous or rewarding nature of farm work. We showed that the types of information needed change during the process of introducing a new practice. In the first phase, farmers gather mainly generic information about the focal operation and the resources required. In the next phase, they run innovation experiments, producing their own information on how their work is changing and how to reorganize it. Based on these results, we suggest some paths for designing support tools.


Agroecology Process of change Innovation experimentation Work time Work organization 



We thank all the farmers who agreed to be interviewed.

Funding information

This study was financially supported by the Loire-Brittany and Seine-Normandie water agencies.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Agreste (2011) Recensement agricole 2010 en France métropolitaine. Agreste Primer Ministère de l'agriculture et de l'Alimentation,
  2. Alard V, Beranger C, Journet M (2002) A la recherche d'une agriculture durable Etude de systèmes herbagers économes en Bretagne. Inra Editions, ParisGoogle Scholar
  3. Aubry C, Papy F, Capillon A (1998) Modelling decision-making processes for annual crop management. Agric Syst 56(1):45–65CrossRefGoogle Scholar
  4. Catalogna M, Dubois M, Navarrete M (2018) Diversity of experimentation by farmers engaged in agroecology. Agron Sustain Dev 38(50).
  5. Cerf M, Magne M-A (2007) Comment les agriculteurs mobilisent-ils des interventions de développement ? Activites 04(1).
  6. Chantre E (2011) Apprentissages des agriculteurs vers la réduction d’intrants en Grandes Cultures: Cas de la Champagne Berrichonne de l’Indre dans les années 1985–2010. Sciences agricoles. AgroParisTech,
  7. Collerette P, Delisle G, Perron R (1997) Le changement organisationnel: théorie et pratique. Presses de l'Université du QuébecGoogle Scholar
  8. Coquil X, Cerf M, Auricoste C, Joannon A, Barcellini F, Cayre P, Chizallet M, Dedieu B, Hostiou N, Hellec F, Lusson JM, Olry P, Omon B, Prost L (2018) Questioning the work of farmers, advisors, teachers and researchers in agro-ecological transition. A review. Agron Sustain Dev 38:47. CrossRefGoogle Scholar
  9. Dounias I, Aubry C, Capillon A (1999) Decision-making processes for crop management on African farms, modelling from a case study of cotton crop in northern Cameroon. Agric Syst 73:233–260. CrossRefGoogle Scholar
  10. Dumont A, Baret P (2016) What are the differences in quality of work between vegetable growers in agroecological and in conventional systems? In: International symposium on work in agriculture, Maringa Brazil, Nov.8–11th 2016. p 10Google Scholar
  11. Duru M (2013) Combining agroecology and management science to design field tools under high agrosystem structural or process uncertainty: lessons from two case studies of grassland management. Agric Syst 114:84–94. CrossRefGoogle Scholar
  12. Fiorelli C, Dedieu B, Porcher J (2010) Un cadre d'analyse des compromis adoptés par les éleveurs pour organiser leur travail. Cahiers Agricultures 19(5):8. CrossRefGoogle Scholar
  13. Gerber A, Hoffmann V, Kügler M (1996) Das Wissensystem im Ökologischen Landbau in Deutschland: Zur Entstehung und Weitergabe von Wissen im DiffusionprozeB. Bericht über Landwirtschaft 74:36Google Scholar
  14. Hauggaard-Nielsen H, Mundus S, Jensen ES (2012) Grass-clover undersowing affects nitrogen dynamics in a grain legume-cereal arable cropping system. Field Crop Res 136:23–31. CrossRefGoogle Scholar
  15. Hill S, MacRae R (1995) Conceptual framework for the transition from conventional to sustainable agriculture. J Sustain Agric 7(1):7Google Scholar
  16. Hostiou N, Dedieu B (2011) A method for assessing work productivity and flexibility in livestock farms. Animal 6(05):852–862. CrossRefGoogle Scholar
  17. Joannon A, Papy F, Martin P, Souchère V (2005) Planning work constraints within farms to reduce runoff at catchment level. Agric Ecosyst Environ 111:13–20. CrossRefGoogle Scholar
  18. Karlen D, Duffy M, Colvin T (1995) Nutrient, labor, energy and economic evaluations of two farming systems in Iowa. J Prod Agric 8(4):461–546CrossRefGoogle Scholar
  19. Kling-Eveillard F, Cerf M, Chauvat S, Sabatte N (2012) Le travail sujet intime et multifacette première recommandations pour l'aborder dans le conseil en élevage. INRA Prod Anim 25(2):9Google Scholar
  20. Kolb D (1984) The process of experiential learning. In: Experiential learning experience as the source of learning and development. Prentice Hall, Englewood Cliffs, p 18Google Scholar
  21. Kummer S, Aigelsperger L, Milestad R, Chowdhury A, Vogl C (2010) Knowledge systems, innovations and social learning in organic farming—an overview. Paper presented at the 9th European IFSA Symposium, Vienna (Autria), Jul. 4-6 2010Google Scholar
  22. Lithourgidis AS, Dhima KV, Damalas CA, Vasilakoglou IB, Eleftherohorinos IG (2006) Tillage effects on wheat emergence and yield at varying seeding rates, and on labor and fuel consumption. Crop Sci 46(3):1187–1192. CrossRefGoogle Scholar
  23. Lorenz C, Errignton A (1991) Achieving sustainability in cropping systems: the labour requirements of a mulch rotation system in Kalimantan, Indonesia. Trop Agric 68(3):249–254Google Scholar
  24. Mabon F, Raimbault T, Moreau P, Devienne S, Delaby L, Durand P, Ruiz L, Vertes F (2009) Concilier efficacité technico-économique et environnementale des exploitations agricoles en zone vulnérable : apport du diagnostic agraire. Fourrages 199:373–388Google Scholar
  25. Madelrieux S, Dedieu B, Dobremez L (2006) ATELAGE: un modèle pour qualifier l’organization du travail dans les exploitations d’élevage (ATELAGE: Modelling to qualify work organization in livestock farming systems). Prod Anim 19(1):47–57Google Scholar
  26. Méliani V (2013) Choisir l'analyse par théorisation ancrée : illustration des apports et des limites de la méthode. Recherches qualitatives Hors série n°15:18Google Scholar
  27. Nonaka I, Byosiere P, Borucki C, Konno N (1994) Organizational knowledge creation theory: a first comprehensive experiment. Int Bus Rev 3(4):15CrossRefGoogle Scholar
  28. Paineau F, Demazeau E, Bel M (1998) Quels éléments conditionnent le regard des agriculteurs sur l'environnement et l'adoption des pratiques plus respectueuses de l'environnement? Courrier de l'environnement de l'INRA 35:65–70Google Scholar
  29. Papy F, Attonaty J, Laporte C, Soler LG (1988) Work organization simulation as a basis for farm management advice. Agric Syst 27:295–305. CrossRefGoogle Scholar
  30. Pelzer E, Bazot M, Makowski D, Corre-Hellou G, Naudin C, Al Rifaï M, Baranger E, Bedoussac L, Biarnès V, Boucheny P, Carrouée B, Dorvillez D, Foissy D, Gaillard B, Guichard L, Mansard M-C, Omon B, Prieur L, Yvergniaux M, Justes E, Jeuffroy M-H (2012) Pea-wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. Eur J Agron 40:39–53. CrossRefGoogle Scholar
  31. Petit E, Joannon A, Meynard J (2016) Do work simulation tools help farmers to change crop practices? Paper presented at the International Symposium on Work in Agriculture, Maringa Brazil, Nov. 8–11th 2016. p 10Google Scholar
  32. Pfeffer M (1992) Labor and production barriers to reduction of agricultural chemical inputs. Rural Sociol 57(3):347–362CrossRefGoogle Scholar
  33. Sanderson Bellamy A, Ioris AAR (2017) Addressing the knowledge gaps in agroecology and identifying guiding principles for transforming conventional agri-food systems. Sustainability 9(3):330. CrossRefGoogle Scholar
  34. Sattler C, Nagel U (2010) Factors affecting farmers' acceptance of conservation measures—a case study from north-eastern Germany. Land Use Policy 27:70–77. CrossRefGoogle Scholar
  35. Toffolini Q, Jeuffroy M-H, Prost L (2016) Indicators used by farmers to design agricultural systems: a survey. Agron Sustain Dev 36(1).
  36. Wezel A, Casagrande M, Celette F, Vian JF, Ferrer A, Peigné J (2012) Agroecological practices for sustainable agriculture. Agron Sustain Dev 34(1). CrossRefGoogle Scholar
  37. Wossink G, De Buck A, Van Niejenhuis J, Haverkamp H (1997) Farmers perceptions of weed control techniques in sugar beet. Agric Syst 55(3):409–423. CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Elisa Delecourt
    • 1
  • Alexandre Joannon
    • 1
    Email author
  • Jean-Marc Meynard
    • 2
  2. 2.UMR SADAPTINRA, AgroParis Tech, Université Paris-SacalyThiverval-GrignonFrance

Personalised recommendations