Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review

  • Gilles LemaireEmail author
  • Thomas Sinclair
  • Victor Sadras
  • Gilles Bélanger
Review Article


Historically, the agronomic focus of crop mineral nutrition has yielded responses to individual elements (N, P, K…) to determine the economically optimum fertilization rates. This “prognostic” approach required several parameters for crops, climates, and soils that are often estimated with large uncertainty leading to over-fertilization and environmental problems in some systems (e.g., maize in China), and under-fertilization and soil mining in other systems (e.g., wheat in Australia).

In this review, an alternative approach is developed for reducing the uncertainty intrinsically linked to this prognostic approach. Our approach is based on four propositions: (1) the evidence of an allometry between the metabolic shoot mass (scaling with leaf area) and the structural shoot mass (supporting and vascular tissues) within plants that allows the formulation of critical N dilution curves and the determination of the Nitrogen Nutrition Index (NNI) for estimating the N nutrition status of field crops; (2) the co-regulation of crop N uptake dynamics by both soil N supply and crop N demand in relation with its growth capacity that allows a better, more generalizable estimation of timing and rate of fertilizer; (3) a better understanding of the effects of genotype–environment–management interactions on N use efficiency in cropping systems reducing then drastically uncertainties linked to the classical prognostic approach for N fertilization; (4) as P and K also relate allometrically with biomass, P and K concentrations can be directly related to N concentration for the formulation of a multi-element diagnosis of crop nutrition. Here, we develop the theoretical background supporting these four propositions and outline implications for both fertilization management and crop phenotyping.


Crop N-P-K-S nutrition Crop fertilization Allometry in plants Leaf area index Crop diagnosis N dilution 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Agren GI (2004) The C:N:P stoichiometry of autotrophs: theory and observations. Ecol Lett 7:185–191. CrossRefGoogle Scholar
  2. Amir S, Cohen D (1990) Optimal reproductive efforts and the timing of reproduction of annual plants in randomly varying environments. J Theor Biol 147:17–42CrossRefGoogle Scholar
  3. Andrews M, Sprent JI, Raven JA, Eady PE (1999) Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisum sativum, Phaseolus vulgaris and Triticum aestivum under different nutrient deficiencies. Plant Cell Environ 22:949–958CrossRefGoogle Scholar
  4. Angus JF, Grace PR (2017) Nitrogen balance in Australia and nitrogen use efficiency on Australian farms. Soil Res 55:435–450. CrossRefGoogle Scholar
  5. Angus JF, Moncur MW (1985) Models of growth and development of wheat in relation to plant nitrogen. Aust J Agric Res 36:537–544CrossRefGoogle Scholar
  6. Anten NPR, Schieving F, Werger MJA (1995) Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono- and dicotyledonous species. Oecologia 101:504–513PubMedCrossRefPubMedCentralGoogle Scholar
  7. Aphalo PJ, Ballaré CL (1995) On the importance of information-acquiring systems in plant-plant interactions. Funct Ecol 9:5–14CrossRefGoogle Scholar
  8. Assuero SG, Mollier A, Pellerin S (2004) The decrease in growth in phosphorus-deficient maize leaves is related to a lower cell production. Plant Cell Environ 27:887–895. CrossRefGoogle Scholar
  9. Ballaré CL, Scopel AL, Sanchez RA (1995) Plant photomorphogenesis in canopies, crop growth and yield. Hort Sci 30:1172–1181Google Scholar
  10. Ballaré CL, Scopel AL, Sanchez RA (1997) Foraging for light: photosensory ecology and agricultural implications. Plant Cell Environ 20:820–825CrossRefGoogle Scholar
  11. Baret F, Fourty T (1997) Radioetric estimates of nitrogen status of leaves and canopies. In: Lemaire G, Gastal F (eds) Diagnosis of the nitrogen status in crops. Springer-Verlag, Heidelberg, pp 201–224CrossRefGoogle Scholar
  12. Bélanger G, Gastal F, Lemaire G (1992a) Growth analysis of a tall fescue sward fertilized with different rates of nitrogen. Crop Sci 6:1371–1376CrossRefGoogle Scholar
  13. Bélanger G, Gastal F, Warembourg FR (1992b) The effects of nitrogen fertilization and the growing season on carbon partitioning in a sward of tall fescue (Festuca arundinacea Schreb). Ann Bot 70:239–244CrossRefGoogle Scholar
  14. Bélanger G, Gastal F, Warembourg F (1994) Carbon balance on tall fescue: effects of nitrogen and growing season. Ann Bot 74:653–659CrossRefGoogle Scholar
  15. Bélanger G, Richards JR, Milburn P, Walker D (1998) Influence of previous cropping practices on the response of spring wheat to applied N. Can J Plant Sci 78:267–273CrossRefGoogle Scholar
  16. Bélanger G, Walsh JR, Richards JE, Milburn PH, Ziadi N (2000) Yield response of two potato cultivars to supplemental irrigation and fertilization in New Brunswick. Am J Potato Res 77:11–21. CrossRefGoogle Scholar
  17. Bélanger G, Michaud R, Jefferson PG, Tremblay GF, Brégard A (2001a) Improving the nutritive value of timothy through management and breeding. Can J Plant Sci 81:577–585. CrossRefGoogle Scholar
  18. Bélanger G, Walsh JR, Richards JE, Milburn PH, Ziadi N (2001b) Predicting nitrogen fertilizer requirements of potatoes in Atlantic Canada with soil nitrate determinations. Can J Soil Sci 81:535–544CrossRefGoogle Scholar
  19. Bélanger G, Walsh JR, Richards JE, Milburn PH, Ziadi N (2001c) Critical nitrogen curve and nitrogen nutrition index for potato in eastern Canada. Am J Potato Res 78:355–364CrossRefGoogle Scholar
  20. Bélanger G, Walsh JR, Richards JE, Milburn PH, Ziadi N (2003) Residual soil nitrate after potato harvest. J Environ Qual 32:607–612PubMedCrossRefGoogle Scholar
  21. Bélanger G, Ziadi N, Pageau D, Grant CA, Högnäsbacka M, Virkajärvi P, Hu ZY, Lu J, Lafond J, Nyiraneza J (2015a) A model of critical phosphorus concentration in the shoot biomass of wheat. Agron J 107:963–970. CrossRefGoogle Scholar
  22. Bélanger G, Ziadi N, Pageau D, Grant CA, Lafond J, Nyiraneza J (2015b) Shoot growth, phosphorus–nitrogen relationships, and yield of canola in response to mineral phosphorus fertilization. Agron J 107:1458–1464. CrossRefGoogle Scholar
  23. Bélanger G, Ziadi N, Lajeunesse J, Jouany C, Virkajarvi P, Sinaj S, Nyiraneza J (2017) Shoot growth and phosphorus–nitrogen relationship of grassland swards in response to mineral phosphorus fertilization. Field Crops Res 204:31–41. CrossRefGoogle Scholar
  24. Bonesmo H, Bélanger G (2002) Timothy yield and nutritive value by the CATIMO model: I. Growth and nitrogen. Agron J 94:337–345. CrossRefGoogle Scholar
  25. Boussingault JB (1855) Recherches sur la végétation. De l’action du salpêtre sur le développement des plantes. J Pharm Chim. 3rd series 25:122–131Google Scholar
  26. Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155CrossRefGoogle Scholar
  27. Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Nicoullaud B, Gate P, Devienne-Barret F, Antonioletti R, Durr C, Richard G, Beaudoin N, Recous S, Tayot X, Plenet D, Cellier P, Machet JM, Meynard JM, Delecolle R (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18:311–346CrossRefGoogle Scholar
  28. Brouwer R (1963) Some aspects of the equilibrium between underground and overground plant parts. Jaarb IBS Wageningen 213:31–34Google Scholar
  29. Caloin M, Yu O (1984) Analysis of the time course change in nitrogen content of Dactylis glomerata L. using a model of plant growth. Ann Bot 54:69–76CrossRefGoogle Scholar
  30. Cohen D (1971) Maximising final yield when growth is limited by time or by limiting resources. J Theor Biol 33:299–307PubMedCrossRefPubMedCentralGoogle Scholar
  31. Colnenne C, Meynard JM, Reau R, Justes E, Merrien A (1998) Determination of a critical nitrogen dilution curve for winter oilseed rape. Ann Bot 81:311–317CrossRefGoogle Scholar
  32. Connor DJ, Sadras VO (1992) Physiology of yield expression in sunflower. Field Crops Res 30:333–389CrossRefGoogle Scholar
  33. Connor DJ, Hall AJ, Sadras VO (1993) Effects of nitrogen content on the photosynthetic characteristics of sunflower leaves. Aust J Plant Physiol 20:251–263Google Scholar
  34. Cossani CM, Sadras VO (2018) Water-nitrogen co-limitation in grain crops. Adv Agron 150:231–274 ISBN: 978-0-12-815175-4CrossRefGoogle Scholar
  35. de Wit CT (1992) Resource use efficiency in agriculture. Agric Syst 40:125–151CrossRefGoogle Scholar
  36. Debaeke P, van Oosterom EJ, Justes E, Champolovier L, Merrien A, Aguizzerabal LAN, Gonzalez-Dugo V, Massignam AM, Montemorro F (2012) A species-specific critical nitrogen dilution curve for sunflower (Helianthus annuus L.). Field Crop Res 136:26–34. CrossRefGoogle Scholar
  37. Devienne-Barret F, Justes E, Machet JM, Mary B (2000) Integrated control of nitrate uptake by crop growth rate and soil nitrate availability under field conditions. Ann Bot 86:995–1005. CrossRefGoogle Scholar
  38. Dimes J, Rodriguez D, Potgieter A (2015) Raising productivity of maize-based cropping systems in eastern and southern Africa: step-wise intensification options. In: Sadras VO, Calderini DF (eds) Crop physiology: applications for genetic improvement and agronomy, 2nd edn. Academic Press, San Diego, pp 93–110 ISBN: 978-0-12-4171046CrossRefGoogle Scholar
  39. Divito GA, Echeveria HE, Andrade FH, Sadras VO (2016) Soybean shows an attenuated nitrogen dilution curve irrespective of maturity group and sowing date. Field Crop Res 186:1–9. CrossRefGoogle Scholar
  40. Drenovsky RE, Richards JH (2004) Critical N:P values: predicting nutrient deficiencies in desert shrublands. Plant Soil 259:59–69. CrossRefGoogle Scholar
  41. Duncan EG, O’Sullivan CA, Roper MM, Biggs JS, Peoples MB (2018) Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: review. Field Crop Res 226:56–65. CrossRefGoogle Scholar
  42. Durand J-L, Lemaire G, Gosse G, Chartier M (1989) Analyse de la conversion de l’énergie solaire interceptée par un peuplement de luzerne (Medicago sativa L.) soumis à un déficit hydrique. Agronomie 9(6):599–607CrossRefGoogle Scholar
  43. Durand J-L, Varlet-Grancher C, Lemaire G, Gastal F, Moulia B (1991) Carbon partitioning in forage crops. Acta Biotheor 39:213–224CrossRefGoogle Scholar
  44. Duru M, Ducrocq H (1997) A nitrogen and phosphorus herbage nutrient index as a tool for assessing the effect of N and P supply on the dry matter yield of permanent pastures. Nutr Cycl Agroecosyst 47:59–69CrossRefGoogle Scholar
  45. Duru M, Thellier L (1997) N and P-K status of herbage : use for diagnosis of grasslands. In: Lemaire G, Barns I (eds) Diagnostic procedures for crop N management and decision making. Science Update, INRA Editions, ParisGoogle Scholar
  46. Duru M, Sos L, Viard R (1992) Diagnostic de la nutrition minérale de prairies permanentes au printemps: I. Établissement de références. Agronomie, EDP Sciences, pp 219–233Google Scholar
  47. Evans G C (1972) The quantitative analysis of plant growth, Vol. 1. Blackwell Scientific PublicationsGoogle Scholar
  48. Evans GC, Hughes AP (1961) Plant growth and the aerial environment. New Phytol 60:150–180CrossRefGoogle Scholar
  49. Farrar JF (1988) Temperature and the partitioning of the translocated carbon. In: Long SP, Woodwards FI (eds) Plants and Temperature. Cambridge University Press, Cambridge, pp 203–235Google Scholar
  50. Farrugia A, Gastal F, Scholefield D (2004) Assessment of the nitrogen status of grassland. Grass Forage Sci 59:113–120. CrossRefGoogle Scholar
  51. Fischer RA, Connor DJ (2018) Issues for cropping and agricultural science in the next 20 years. Field Crops Res 222:121–142. CrossRefGoogle Scholar
  52. Fischer RA, Stockman YM (1986) Increased kernel number in Norin 10-derived dwarf wheat—evaluation of the cause. Aust J Plant Physiol 13:767–784Google Scholar
  53. Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 3:64–71CrossRefGoogle Scholar
  54. Gastal F, Bélanger G (1993) The effect of nitrogen fertilization and the growing season on photosynthesis of field grown tall fescue canopies. Ann Bot 72:401–408CrossRefGoogle Scholar
  55. Gastal F, Lemaire G (2002) N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot 53:789–799PubMedCrossRefGoogle Scholar
  56. Gastal F, Nelson CJ (1994) Nitrogen use within the growing leaf blade of tall fescue. Plant Physiol 105:191–197PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gastal F, Saugier B (1989) Relationships between nitrogen uptake and carbon assimilation in whole plant of tall fescue. Plant Cell Environ 12:407–418CrossRefGoogle Scholar
  58. Gastal G, Bélanger G, Lemaire G (1992) A model of the leaf extension rate of tall fescue in response to nitrogen and temperature. Ann Bot 70:437–442CrossRefGoogle Scholar
  59. Gastal F, Lemaire G, Durand J-L, Louarn G (2014) Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency. In: Sadras VO, Calderini DF (eds) Crop Physiology, application for genetic improvement and agronomy. Academic Press, Oxford, pp 161–206 ISBN: 978-0-12-4171046Google Scholar
  60. Gerardeaux G, Jordan-Meille L, Constantin J, Pellerin S, Dingkuhn M (2010) Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environ Exp Bot 67:451–459. CrossRefGoogle Scholar
  61. Gosse G, Chartier M, Lemaire G (1984) Mise au point d’un modèle de prévision de production pour une culture de luzerne. C R Acad Sci Paris 298(18):541–544Google Scholar
  62. Greenwood DJ, Karpinets TV (1997) Dynamic model for the effects of K fertilizer on crop growth, K-uptake and soil-K in arable cropping.1—description of the model. Soil Use Manag 13:178–183CrossRefGoogle Scholar
  63. Greenwood DJ, Stone DA (1998) Prediction and measurement of the decline in the critical-K, the maximum-K and total cation plant concentrations during growth of field vegetable crops. Ann Bot 82:871–881CrossRefGoogle Scholar
  64. Greenwood DJ, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson JJ (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 66:425–436CrossRefGoogle Scholar
  65. Greenwood DJ, Karpinets TV, Stone DA (2001) Dynamic model for the effects of soil P and fertilizer P on crop growth, P-uptake and soil P in arable cropping: model description. Ann Bot 88:279–291CrossRefGoogle Scholar
  66. Greenwood DJ, Karpinets TV, Zhang K, Bosh-Serra A, Boldrini A, Karawulova L (2008) A unifying concept for the dependence of whole-crop N:P ratio on biomass: theory and experiment. Ann Bot 102:967–977. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Grindlay DJC (1997) Towards an explanation of crop nitrogen demand based on leaf nitrogen per unit leaf area. J Sci Food Agric 63:116–123Google Scholar
  68. Grindlay DJC, Sylvester-Bradley R, Scott RK (1993) Nitrogen uptake of young vegetative plants in relation to green area. J Sci Food Agric 63:116–123Google Scholar
  69. Güsewell S, Koerselman W, Verhoeven JTA (2003) Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecol Appl 13:372–384. CrossRefGoogle Scholar
  70. Hardwick RC (1987) The nitrogen content of plants and the self-thinning rule of plant ecology: a test of the core-shin hypothesis. Ann Bot 60:439–446CrossRefGoogle Scholar
  71. Hirose T, Werger MJA (1987) Maximising daily canopy photosynthesis with respect to the leaf-nitrogen allocation pattern in the canopy. Oecologia 72:520–526PubMedCrossRefPubMedCentralGoogle Scholar
  72. Hoogmoed M, Sadras VO (2018) Water stress scatters nitrogen dilution curves in wheat. Frontiers (in press).
  73. Hoogmoed M, Neuhaus A, Noack S, Sadras VO (2018) Benchmarking wheat yield against crop nitrogen status. Field Crops Res 222:153–163. CrossRefGoogle Scholar
  74. Jobbágy EG, Sala OE (2014) The imprint of crop choice on global nutrient needs. Environ Res Lett 9:084014 (10pp). CrossRefGoogle Scholar
  75. Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelorc WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18:235–265. CrossRefGoogle Scholar
  76. Jordan-Meille L, Pellerin S (2004) Leaf area establishment of a maize (Zea mays L.) field crop under potassium deficiency. Plant Soil 265:75–92. CrossRefGoogle Scholar
  77. Justes E, Jeuffroy M-H, Mary B (1997) The nitrogen requirement of major agricultural crops. Wheat, barley and durum wheat. In: Lemaire G, Gastal F (eds) Diagnosis of the nitrogen status in crops. Springer, New York, pp 73–89CrossRefGoogle Scholar
  78. Kamprath EJ (1987) Enhanced phosphorus status of maize resulting from nitrogen fertilization of high phosphorus soils. Soil Sci Am J 5I:1522–I526CrossRefGoogle Scholar
  79. Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburne M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288. CrossRefGoogle Scholar
  80. Körner C (1991) Some overlooked plant characteristics as determinants of plant growth: a reconsideration. Funct Ecol 5:162–173CrossRefGoogle Scholar
  81. Kunrath TR, Lemaire G, Sadras VO, Gastal F (2018) Water use efficiency in perennial forage species: interactions between nitrogen nutrition and water deficit. Field Crop Res 222:1–11. CrossRefGoogle Scholar
  82. Lambers H (1983) The functional equilibrium, nibbling on the edges of a paradigm. Neth J Agr Sci 31:305–311Google Scholar
  83. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plants traits revisiting Holy Grail. Funct Ecol 16:545–556. CrossRefGoogle Scholar
  84. Lejay L, Tillard P, Lepetit M et al (1999) Molecular and functional regulation of two nitrate uptake systems by N and C-status of Arabidopsis plants. Plant J 18:509–519PubMedCrossRefGoogle Scholar
  85. Lemaire G (2015) Crop response to N deficiency. In: Encyclopedia of Sustainability Science and Technology, Springer Science, Business Media, New YorkGoogle Scholar
  86. Lemaire G, Gastal F (1997) N uptake and distribution in plant canopies. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops. Springer-Verlag, Heidelberg, pp 3–33CrossRefGoogle Scholar
  87. Lemaire G, Millard P (1999) An ecophysiological approach to modelling resource fluxes in competing plants. J Exp Bot 330:15–28CrossRefGoogle Scholar
  88. Lemaire G, Salette J (1984a) Relation entre dynamique de croissance et dynamique de prélèvement d’azote pour un peuplement de graminées fourragères. I—etude de l’effet du milieu. Agronomie 4(5):423–430CrossRefGoogle Scholar
  89. Lemaire G, Salette J (1984b) Relation entre dynamique de croissance et dynamique de prélèvement d’azote pour un peuplement de graminées fourragères. II—etude de la variabilité entre génotypes. Agronomie 4(5):431–436CrossRefGoogle Scholar
  90. Lemaire G, Durand J-L, Lila M (1989) Effet de la sécheresse sur la valeur énergétique et azotée de la luzerne (Medicago sativa L.). Agronomie 9(9):841–848CrossRefGoogle Scholar
  91. Lemaire G, Onillon B, Gosse G, Chartier M, Allirand JM (1991) Nitrogen distribution within a lucerne canopy during regrowth: relation with light distribution. Ann Bot 68:483–488CrossRefGoogle Scholar
  92. Lemaire G, van Oosterom E, Sheehy J, Jeuffroy MH, Massignam A, Rossato L (2007) Is crop demand more closely related to dry matter accumulation of leaf area expansion during vegetative growth? Field Crops Res 100:91–106. CrossRefGoogle Scholar
  93. Lemaire G, Jeuffroy MH, Gastal F (2008) Diagnosis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management. Eur J Agron 28:614–624. CrossRefGoogle Scholar
  94. Liebscher G (1895) Untersuchungen über die Bestimmung des Düngerbedürfnisses der Ackerböden und Kulturpflanzen. J Landwirtsch 43(1895):49–216Google Scholar
  95. Machet J-M, Dubrulle P, Damay N, Duval R, Julien J-L, Recous S (2017) A dynamic decision-making tool for calculating the optimal rates of N application for 40 annual crops while minimising the residual level of mineral N at harvest. Agronomy 7:73. CrossRefGoogle Scholar
  96. McConnaughay KDM, Coleman JS (1999) Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Oecologia 113:447–455Google Scholar
  97. Minchin PEH, Thorpe MR, Farrar JF (1993) A simple mechanistic model of phloem transport which explains sink priority. J Exp Bot 44:947–955CrossRefGoogle Scholar
  98. Monjardino M, McBeath TM, Brennan L, Llewellyn RS (2013) Are farmers in low-rainfall cropping regions under-fertilising with nitrogen? A risk analysis. Agric Syst 116:37–51. CrossRefGoogle Scholar
  99. Monjardino M, Mcbeath T, Ouzman J, Llewellyn R, Jones B (2015) Farmer risk-aversion limits closure of yield and profit gaps: a study of nitrogen management in the southern Australian wheat belt. Agric Syst 137:108–118. CrossRefGoogle Scholar
  100. Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766CrossRefGoogle Scholar
  101. Monteith JL (1994) Principles of resource capture by crop stands. In: Monteith JL, Scott RK, Unsworth MH (eds) Resource capture by crops. Nottingham University Press, Nottingham, pp 1–15Google Scholar
  102. Muchow RC, Sinclair TR (1993) Effect of nitrogen supply on maize yields. II. Field and model analysis. Agron J 87:642–648CrossRefGoogle Scholar
  103. Neuhaus A, Sadras VO (2018) Relationship between rainfall-adjusted nitrogen nutrition index and yield of wheat in Western Australia. J Plant Nutr (in press) 41:2637–2643CrossRefGoogle Scholar
  104. Niklas KJ (1994) Plant allometry. Univ. of Chicago Press, ChicagoGoogle Scholar
  105. Niklas KJ, Owens T, Reich PB, Cobb ED (2005) Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol Lett 8:636–642. CrossRefGoogle Scholar
  106. Peng S, Buresh RJ, Huang J, Zhong X, Zou Y, Yang J, Wang G, Liu Y, Hu R, Tang Q (2010) Improving nitrogen fertilization in rice by site-specific N management: a review. Agron Sustain Dev 30:649–656. CrossRefGoogle Scholar
  107. Plénet D, Cruz P (1997) The nitrogen requirement of major agricultural crops. Maize and sorghum. In: Lemaire G, Gastal F (eds) Diagnosis of the nitrogen status in crops. Springer, New York, pp 93–105CrossRefGoogle Scholar
  108. Plénet D, Mollier A, Pellerin S (2000) Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield components. Plant Soil 224:259–272CrossRefGoogle Scholar
  109. Ratjen AM, Lemaire G, Kage H, Plénet D, Justes E (2018) Key variables for simulating leaf area and N status: biomass based relations versus phenology driven approaches. Eur J Agron 100:110–117. CrossRefGoogle Scholar
  110. Ravier C, Jeuffroy M-H, Meynard J-M (2016) Mismatch between a science-based decision tool and its use: the case of the balance-sheet method for nitrogen fertilization in France. NAJS-Wagening J Life Sci 79:31–40. CrossRefGoogle Scholar
  111. Ravier C, Jeuffroy M-H, Gate P, Cohan J-P, Meynard J-M (2018) Combining user involvement with innovative design to develop a radical new method for managing N fertilization. Nutr Cycl Agroecosyst 110:117–134. CrossRefGoogle Scholar
  112. Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ (2010) Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc R Soc B Biol Sci 277:877–883. CrossRefGoogle Scholar
  113. Reussi Calvo N, Echeverria H, Sainz Rozas H (2011) Diagnosing sulfur deficiency in spring red wheat: plant analysis. J Plant Nutr 34:573–589CrossRefGoogle Scholar
  114. Sackville-Hamilton NR, Matthew C, Lemaire G (1995) In defence of the −3/2 boundary rule : a reevaluation of self-thinning concepts and status. Ann Bot 76:569–577CrossRefGoogle Scholar
  115. Sadras VO (2006) The N:P stoichiometry of cereal, grain legume and oilseed crops. Field Crops Res 95:13–29. CrossRefGoogle Scholar
  116. Sadras VO, Lemaire G (2014) Quantifying crop nitrogen status for comparisons of agronomic practices and cultivars. Field Crop Res 164:54–64. CrossRefGoogle Scholar
  117. Sadras VO, O'Leary GJ, Roget DK (2005) Crop responses to compacted soil: capture and efficiency in the use of water and radiation. Field Crops Res 91:131–148. CrossRefGoogle Scholar
  118. Sadras VO, Lawson C, Montoro A (2012) Photosynthetic traits of Australian wheat varieties released between 1958 and 2007. Field Crops Res 134:19–29. CrossRefGoogle Scholar
  119. Salette J (1990) The effect of level of nitrogen nutrition upon mineral content and removal in grasses and wheat. Fert Res 26:229–235CrossRefGoogle Scholar
  120. Salette J, Huché L (1991) Diagnostic de 1'état de nutrition minérale d'une prairie par l'analyse minérale du végétal: principes, mise en oeuvre, exemples. Fourrages 125:3–18Google Scholar
  121. Scaife A (1994) Fall in nutrient demand per unit length of root during the linear phase of plant growth. Plant Soil 164:315–317CrossRefGoogle Scholar
  122. Schwinning S, Weiner J (1998) Mechanisms determining the degree of size-asymmetry in competition among plants. Oecologia 113:447–455PubMedCrossRefGoogle Scholar
  123. Seginer I (2004) Plant spacing effect on the nitrogen concentration of a crop. Eur J Agron 21:369–377. CrossRefGoogle Scholar
  124. Sinclair TR, Amir J (1992) A model to assess nitrogen limitations on the growth and yield of spring wheat. Field Crops Res. 30:63–78CrossRefGoogle Scholar
  125. Sinclair TR, Horie (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci 29:90–98CrossRefGoogle Scholar
  126. Sinclair TR, Park WI (1993) Inadequacy of the Liebig limiting-factor paradigm for explaining varying crop yields. Agron J 85:742–746CrossRefGoogle Scholar
  127. Sinclair TR, Sinclair CJ (2010) Bread, beer and the seeds of change: agriculture’s imprint on world history. CAB International, Wallingford ISBN-13: 978-1845937041CrossRefGoogle Scholar
  128. Sinclair TR, Mosca G, Bona S (1993) Simulation analysis of variation among season in winter wheat yields in northern Italy. J Agron Crop Sci 170:202–207CrossRefGoogle Scholar
  129. Sinclair TR, Muchow RC, Monteith JL (1997) Model analysis of sorghum response to nitrogen in soubtropcial and tropical environments. Agron J 89:201–207CrossRefGoogle Scholar
  130. Smith PF (1962) Mineral analysis of plant tissues. Ann Rev Plant Physiol 13:81–108CrossRefGoogle Scholar
  131. Soltani A, Sinclair TR (2012) Modeling physiology of crop development, growth and yield. CABI, Wallingford ISBN-13: 978 1 84593 970 0CrossRefGoogle Scholar
  132. Soltani A, Sinclair TR (2015) A comparison of four wheat models with respect to robustness and transparency: simulation in temperate, sub-humid environment. Field Crops Res 175:37–46. CrossRefGoogle Scholar
  133. Soltani A, Maddah V, Sinclair TR (2013) SSM-wheat: a simulation model for wheat development, growth and yield. J Plant Prod 7:711–740 ISSN: 1735-6814 (Print), 1735-8043 (Online)Google Scholar
  134. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  135. Sylvester-Bradley R, Stokes DT, Scott RK, Willington VBA (1990) A physiological analysis of the diminishing responses of winter wheat to applied nitrogen. 2. Evidence. Asp Appl Biol II Cereal Qual 25:289–300Google Scholar
  136. Tahir Ata-Ul-Karim S, Liu X, Lu Z, Yuan Z, Zhu Y, Cao W (2016) In-season estimation of rice grain yield using critical nitrogen dilution curve. Field Crops Res 195:1–8. CrossRefGoogle Scholar
  137. Thomas H, Ougham H (2015) Senescence and crop performance. In: Sadras VO, Calderini DF (eds) Crop physiology: applications for genetic improvement and agronomy. Academic Press, San Diego, pp 223–250CrossRefGoogle Scholar
  138. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677PubMedCrossRefPubMedCentralGoogle Scholar
  139. Trapani N, Hall AJ, Weber M (1999) Effects of constant and variable nitrogen supply on sunflower (Helianthus annuus L.) leaf cell number and size. Ann Bot 84:599–606CrossRefGoogle Scholar
  140. Valkama ER, Uusitalo R, Turtola E (2011) Yield response models to phosphorus application: a research of Finnish field trials to optimize P use of cereals. Nutr Cycl Agroecosyst 91:1–15CrossRefGoogle Scholar
  141. Valle SR, Pinochet D, Calderini DF (2009) Al toxicity effects on radiation interception and radiation use efficiency of Al-tolerant and Al-sensitive wheat cultivars under field conditions. Field Crops Res. 114:343–350CrossRefGoogle Scholar
  142. von Liebig J (1855) Die Grundsätze der Agricultur-Chemie mit Rücksicht auf die in England agestellien Untershchungen. 2nd edition, GraunschweigGoogle Scholar
  143. Walworth JL, Summer ME (1987) The diagnosis and recommendation integrated system (DRIS). Adv Soil S 6:149–188CrossRefGoogle Scholar
  144. Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol 6:207–215. CrossRefGoogle Scholar
  145. Yao X, Zhu Y, Tian YC, Feng W, Cao WX (2010) Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. Int J Appl Earth Obs 12:89–100. CrossRefGoogle Scholar
  146. Yoda K, Kira T, Ogawa H, Hozumi H (1963) Intraspecific competition among higher plants. XI—self-thinning in over-crowded pure stands under cultivated and natural conditions. J Biol Osaka City Univ 14:107–129Google Scholar
  147. Youssefian S, Kirby EJM, Gale MD (1992) Pleiotropic effects of the Ga-insensitive Rht dwarfing genes in wheat .2. Effects on leaf, stem, ear and floret growth. Field Crops Res 28:191–210CrossRefGoogle Scholar
  148. Zhao Z, Wang E, Wang Z, Zang H, Liu Y, Angus JF (2014) A reappraisal of the critical nitrogen concentration of wheat and its implications on crop modeling. Field Crops Res 164:65–73. CrossRefGoogle Scholar
  149. Zhao B, Liu ZD, Ata-Ul-Karim ST, Xiao JF, Liu ZG, Qi AZ, Ning DF, Nan JQ, Duan AW (2016) Rapid and nondestructive estimation of the nitrogen nutrition index in winter barley using chlorophyll measurements. Field Crops Res 185:59–68. CrossRefGoogle Scholar
  150. Ziadi N, Bélanger G, Cambouris A, Tremblay N, Nolin MC, Claessens A (2007) Relationship between P and N concentration in corn. Agron J 99:833–841. CrossRefGoogle Scholar
  151. Ziadi N, Bélanger G, Cambouris A, Tremblay N, Nolin MC, Claessens A (2008a) Relationship between phosphorus and nitrogen concentrations in spring wheat. Agron J 100:80–86. CrossRefGoogle Scholar
  152. Ziadi N, Brassard M, Bélanger G, Cambouris A, Tremblay N, Nolin MC, Claessens A, Parent L-E (2008b) Critical curve and nitrogen nutrition index for corn in eastern Canada. Agron J 100:271–276. CrossRefGoogle Scholar
  153. Ziadi N, Brassard M, Bélanger G, Claessens A, Tremblay N, Cambouris A, Nolin MC, Parent L-E (2008c) Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agron J 100:1264–1273. CrossRefGoogle Scholar
  154. Ziadi N, Bélanger G, Gastal F, Claessens A, Lemaire G, Tremblay N (2009) Leaf nitrogen concentration as an indicator of corn nitrogen status. Agron J 101:947–957. CrossRefGoogle Scholar
  155. Ziadi N, Bélanger G, Claessens A, Lefebvre L, Cambouris AN, Tremblay N, Nolin MC, Parent L-E (2010a) Determination of a critical nitrogen dilution curve for spring wheat. Agron J 102:241–250. CrossRefGoogle Scholar
  156. Ziadi N, Bélanger G, Claessens A, Lefebvre L, Tremblay N, Cambouris AN, , Nolin MC, Parent L-E (2010b) Plant-based diagnostic tools for evaluating wheat nitrogen statusCrop Sci. 50:2580-2590. CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Honorary Director of ResearchINRALusignanFrance
  2. 2.North Carolina State UniversityRaleighUSA
  3. 3.South Australian Research and Development InstituteUrrbraeAustralia
  4. 4.Agriculture and Agri-Food CanadaQuébecCanada

Personalised recommendations