Advertisement

Current knowledge and future research opportunities for modeling annual crop mixtures. A review

  • Noémie GaudioEmail author
  • Abraham J. Escobar-Gutiérrez
  • Pierre Casadebaig
  • Jochem B. Evers
  • Frédéric Gérard
  • Gaëtan Louarn
  • Nathalie Colbach
  • Sebastian Munz
  • Marie Launay
  • Hélène Marrou
  • Romain Barillot
  • Philippe Hinsinger
  • Jacques-Eric Bergez
  • Didier Combes
  • Jean-Louis Durand
  • Ela Frak
  • Loïc Pagès
  • Christophe Pradal
  • Sébastien Saint-Jean
  • Wopke Van Der Werf
  • Eric Justes
Review Article

Abstract

Growing mixtures of annual arable crop species or genotypes is a promising way to improve crop production without increasing agricultural inputs. To design optimal crop mixtures, choices of species, genotypes, sowing proportion, plant arrangement, and sowing date need to be made but field experiments alone are not sufficient to explore such a large range of factors. Crop modeling allows to study, understand, and ultimately design cropping systems and is an established method for sole crops. Recently, modeling started to be applied to annual crop mixtures as well. Here, we review to what extent crop simulation models and individual-based models are suitable to capture and predict the specificities of annual crop mixtures. We argued that (1) the crop mixture spatio-temporal heterogeneity (influencing the occurrence of ecological processes) determines the choice of the modeling approach (plant or crop centered). (2) Only few crop models (adapted from sole crop models) and individual-based models currently exist to simulate annual crop mixtures. Crop models are mainly used to address issues related to both crop mixtures management and the integration of crop mixtures into larger scales such as the rotation. In contrast, individual-based models are mainly used to identify plant traits involved in crop mixture performance and to quantify the relative contribution of the different ecological processes (niche complementarity, facilitation, competition, plasticity) to crop mixture functioning. This review highlights that modeling of annual crop mixtures is in its infancy and gives to model users some important keys to choose the model based on the questions they want to answer, with awareness of the strengths and weaknesses of each of the modeling approaches.

Keywords

Annual crop mixtures Intercrops Genotypes mixtures Crop models Individual-based models Functional–structural plant models Model users 

Notes

Acknowledgements

The authors acknowledge support from European Union through the project H2020 ReMIX (Redesigning European cropping systems based on species mixtures, https://www.remix-intercrops.eu/) and from INRA Environment and Agronomy Division through the project IDEA (Intra- and interspecific diversity mixture in agriculture). We also thank Michael and Michelle Corson for their helpful comments and English revision and the two anonymous reviewers for their valuable comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Affholder F, Tittonell P, Corbeels M et al (2012) Ad hoc modeling in agronomy: what have we learned in the last 15 years? Agron J 104:735.  https://doi.org/10.2134/agronj2011.0376 CrossRefGoogle Scholar
  2. Altieri MA, Nicholls CI, Henao A, Lana MA (2015) Agroecology and the design of climate change-resilient farming systems. Agron Sustain Dev 35:869–890.  https://doi.org/10.1007/s13593-015-0285-2 CrossRefGoogle Scholar
  3. Arim OJ, Waceke JW, Waudo SW, Kimenju JW (2006) Effects of Canavalia ensiformis and Mucuna pruriens intercrops on Pratylenchus zeae damage and yield of maize in subsistence agriculture. Plant Soil 284:243–251.  https://doi.org/10.1007/s11104-006-0053-9 CrossRefGoogle Scholar
  4. Ashton IW, Miller AE, Bowman WD, Suding KN (2010) Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91:3252–3260.  https://doi.org/10.1890/09-1849.1 CrossRefPubMedGoogle Scholar
  5. Baccar R, Fournier C, Dornbusch T, Andrieu B, Gouache D, Robert C (2011) Modelling the effect of wheat canopy architecture as affected by sowing density on Septoria tritici epidemics using a coupled epidemic-virtual plant model. Ann Bot 108:1179–1194.  https://doi.org/10.1093/aob/mcr126 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Balduzzi M, Binder BM, Bucksch A et al (2017) Reshaping plant biology: qualitative and quantitative descriptors for plant morphology. Front Plant Sci 8:177CrossRefGoogle Scholar
  7. Bargaz A, Noyce GL, Fulthorpe R, Carlsson G, Furze JR, Jensen ES, Dhiba D, Isaac ME (2017) Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Appl Soil Ecol 120:179–188.  https://doi.org/10.1016/j.apsoil.2017.08.011 CrossRefGoogle Scholar
  8. Barillot R (2012) Modélisation du partage de la lumière dans l’association blé—pois (Triticum aestivum L. - Pisum sativum L.). Une approche de type plante virtuelle. Université Nantes Angers Le MansGoogle Scholar
  9. Barillot R, Chambon C, Andrieu B (2016) CN-wheat, a functional-structural model of carbon and nitrogen metabolism in wheat culms after anthesis. I. Model description. Ann Bot 118:997–1013.  https://doi.org/10.1093/aob/mcw143 CrossRefPubMedCentralGoogle Scholar
  10. Barillot R, Chambon C, Fournier C, Combes D, Pradal C, Andrieu B (2018) Investigation of complex canopies with a functional–structural plant model as exemplified by leaf inclination effect on the functioning of pure and mixed stands of wheat during grain filling. Ann Bot.  https://doi.org/10.1093/aob/mcy208
  11. Barillot R, Combes D, Pineau S et al (2014a) Comparison of the morphogenesis of three genotypes of pea (Pisum sativum) grown in pure stands and wheat-based intercrops. Aob Plants 6:plu006.  https://doi.org/10.1093/aobpla/plu006 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barillot R, Escobar-Gutiérrez AJ, Fournier C, Huynh P, Combes D (2014b) Assessing the effects of architectural variations on light partitioning within virtual wheat-pea mixtures. Ann Bot 114:725–737.  https://doi.org/10.1093/aob/mcu099 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Barillot R, Louarn G, Escobar-Gutiérrez AJ, Huynh P, Combes D (2011) How good is the turbid medium-based approach for accounting for light partitioning in contrasted grass–legume intercropping systems? Ann Bot 108:1013–1024.  https://doi.org/10.1093/aob/mcr199 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Barot S, Allard V, Cantarel A, Enjalbert J, Gauffreteau A, Goldringer I, Lata JC, le Roux X, Niboyet A, Porcher E (2017) Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron Sustain Dev 37:13.  https://doi.org/10.1007/s13593-017-0418-x CrossRefGoogle Scholar
  15. Baumann DT, Bastiaans L, Goudriaan J, van Laar HH, Kropff MJ (2002) Analysing crop yield and plant quality in an intercropping system using an eco-physiological model for interplant competition. Agric Syst 73:173–203.  https://doi.org/10.1016/S0308-521X(01)00084-1 CrossRefGoogle Scholar
  16. Baxevanos D, Tsialtas IT, Vlachostergios DΝ, Hadjigeorgiou I, Dordas C, Lithourgidis A (2017) Cultivar competitiveness in pea-oat intercrops under Mediterranean conditions. Field Crop Res 214:94–103.  https://doi.org/10.1016/j.fcr.2017.08.024 CrossRefGoogle Scholar
  17. Bedoussac L, Journet E-P, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen ES, Prieur L, Justes E (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron Sustain Dev 35:911–935.  https://doi.org/10.1007/s13593-014-0277-7 CrossRefGoogle Scholar
  18. Berger U, Piou C, Schiffers K, Grimm V (2008) Competition among plants: concepts, individual-based modelling approaches, and a proposal for a future research strategy. Perspect Plant Ecol Evol Syst 9:121–135.  https://doi.org/10.1016/j.ppees.2007.11.002 CrossRefGoogle Scholar
  19. Bergez J-E, Chabrier P, Gary C et al (2013) An open platform to build, evaluate and simulate integrated models of farming and agro-ecosystems. Environ Model Softw 39:39–49.  https://doi.org/10.1016/j.envsoft.2012.03.011 CrossRefGoogle Scholar
  20. Bergez J-E, Colbach N, Crespo O et al (2010) Designing crop management systems by simulation. Eur J Agron 32:3–9.  https://doi.org/10.1016/j.eja.2009.06.001 CrossRefGoogle Scholar
  21. Bergez J-E, Debaeke P, Deumier JM, Lacroix B, Leenhardt D, Leroy P, Wallach D (2001) MODERATO: an object-oriented decision tool for designing maize irrigation schedules. Ecol Model 137:43–60.  https://doi.org/10.1016/S0304-3800(00)00431-2 CrossRefGoogle Scholar
  22. Berntsen J, Hauggard-Nielsen H, Olesen JE, Petersen BM, Jensen ES, Thomsen A (2004) Modelling dry matter production and resource use in intercrops of pea and barley. Field Crop Res 88:69–83.  https://doi.org/10.1016/j.fcr2003.11.012 CrossRefGoogle Scholar
  23. Bertrand N, Roux S, Forey O et al (2018) Simulating plant water stress dynamics in a wide range of bi-specific agrosystems in a region using the BISWAT model. Eur J Agron 99:116–128.  https://doi.org/10.1016/j.eja.2018.06.001 CrossRefGoogle Scholar
  24. Betencourt E, Duputel M, Colomb B et al (2012) Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biol Biochem 46:181–190.  https://doi.org/10.1016/j.soilbio.2011.11.015 CrossRefGoogle Scholar
  25. Boote KJ, Jones JW, Mishoe JW, Berger RD (1983) Coupling pests to crop growth simulators to predict yield reductions. Phytopathology 73:1581–1587.  https://doi.org/10.1094/Phyto-73-1581 CrossRefGoogle Scholar
  26. Boote KJ, Jones JW, White JW et al (2013) Putting mechanisms into crop production models. Plant Cell Environ 36:1658–1672.  https://doi.org/10.1111/pce.12119 CrossRefPubMedGoogle Scholar
  27. Boudreau MA (2013) Diseases in intercropping systems. In: VanAlfen NK (ed) Annual review of phytopathology, Vol 51. pp 499–519Google Scholar
  28. Boudsocq S, Niboyet A, Lata JC et al (2012) Plant preference for ammonium versus nitrate: a neglected determinant of ecosystem functioning? Am Nat 180:60–69.  https://doi.org/10.1086/665997 CrossRefPubMedGoogle Scholar
  29. Brisson N, Bussiere F, Ozier-Lafontaine H et al (2004) Adaptation of the crop model STICS to intercropping. Theoretical basis and parameterisation. Agronomie 24:409–421.  https://doi.org/10.1051/agro:2004031 CrossRefGoogle Scholar
  30. Brisson N, Gate P, Gouache D et al (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crop Res 119:201–212.  https://doi.org/10.1016/j.fcr.2010.07.012 CrossRefGoogle Scholar
  31. Brisson N, Launay M, Mary B, Beaudoin N (2008) Conceptual basis, formalisations and parameterization of the STICS crop model. Editions QuaeGoogle Scholar
  32. Brooker RW, Bennett AE, Cong W-F, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PPM, Jones HG, Karley AJ, Li L, McKenzie BM, Pakeman RJ, Paterson E, Schöb C, Shen J, Squire G, Watson CA, Zhang C, Zhang F, Zhang J, White PJ (2015) Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206:107–117.  https://doi.org/10.1111/nph.13132 CrossRefPubMedGoogle Scholar
  33. Brooker RW, Karley AJ, Newton AC et al (2016) Facilitation and sustainable agriculture: a mechanistic approach to reconciling crop production and conservation. Funct Ecol 30:98–107.  https://doi.org/10.1111/1365-2435.12496 CrossRefGoogle Scholar
  34. Bucksch A, Atta-Boateng A, Azihou AF et al (2017) Morphological plant modeling: unleashing geometric and topological potential within the plant sciences. Front Plant Sci 8:900.  https://doi.org/10.3389/fpls.2017.00900 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Bucksch A, Burridge J, York LM et al (2014) Image-based high-throughput field phenotyping of crop roots. Plant Physiol 166:470–486.  https://doi.org/10.1104/pp.114.243519 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu F (2016) High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytol 212:269–281.  https://doi.org/10.1111/nph.14027 CrossRefPubMedGoogle Scholar
  37. Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349.  https://doi.org/10.1007/BF02912621 CrossRefGoogle Scholar
  38. Callaway RM, Pennings SC, Richards CL (2003) Phenotypic plasticity and interactions among plants. Ecology 84:1115–1128. https://doi.org/10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2Google Scholar
  39. Casadebaig P, Guilioni L, Lecoeur J, Christophe A, Champolivier L, Debaeke P (2011) SUNFLO, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agric For Meteorol 151:163–178.  https://doi.org/10.1016/j.agrformet.2010.09.012 CrossRefGoogle Scholar
  40. Casadebaig P, Mestries E, Debaeke P (2016a) A model-based approach to assist variety evaluation in sunflower crop. Eur J Agron 81:92–105.  https://doi.org/10.1016/j.eja.2016.09.001 CrossRefGoogle Scholar
  41. Casadebaig P, Zheng B, Chapman S et al (2016b) Assessment of the potential impacts of wheat plant traits across environments by combining crop modeling and global sensitivity analysis. PLoS One 11:e0146385.  https://doi.org/10.1371/journal.pone.0146385 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Chatelin MH, Aubry C, Poussin JC et al (2005) DeciBle, a software package for wheat crop management simulation. Agric Syst 83:77–99.  https://doi.org/10.1016/j.agsy.2004.03.003 CrossRefGoogle Scholar
  43. Chave J (1999) Study of structural, successional and spatial patterns in tropical rain forests using TROLL, a spatially explicit forest model. Ecol Model 124:233–254.  https://doi.org/10.1016/S0304-3800(99)00171-4 CrossRefGoogle Scholar
  44. Chelle M (2005) Phylloclimate or the climate perceived by individual plant organs: what is it? How to model it? What for? New Phytol 166:781–790.  https://doi.org/10.1111/j.1469-8137.2005.01350.x CrossRefPubMedGoogle Scholar
  45. Chelle M, Andrieu B (1999) Radiative models for architectural modeling. Agronomie 19:225–240.  https://doi.org/10.1051/agro:19990304 CrossRefGoogle Scholar
  46. Chelle M, Andrieu B (1998) The nested radiosity model for the distribution of light within plant canopies. Ecol Model 111:75–91.  https://doi.org/10.1016/S0304-3800(98)00100-8 CrossRefGoogle Scholar
  47. Chen T-W, Cabrera-Bosquet L, Alvarez Prado S, Perez R, Artzet S, Pradal C, Coupel-Ledru A, Fournier C, Tardieu F (2018) Genetic and environmental dissection of biomass accumulation in multi-genotype maize canopies. J Exp Bot.  https://doi.org/10.1093/jxb/ery309
  48. Chenu K, Deihimfard R, Chapman SC (2013) Large-scale characterization of drought pattern: a continent-wide modelling approach applied to the Australian wheatbelt spatial and temporal trends. New Phytol 198:801–820.  https://doi.org/10.1111/nph.12192 CrossRefPubMedGoogle Scholar
  49. Chenu K, Porter JR, Martre P, Basso B, Chapman SC, Ewert F, Bindi M, Asseng S (2017) Contribution of crop models to adaptation in wheat. Trends Plant Sci 22:472–490.  https://doi.org/10.1016/j.tplants.2017.02.003 CrossRefPubMedGoogle Scholar
  50. Chimonyo VGP, Modi AT, Mabhaudhi T (2016) Simulating yield and water use of a sorghum-cowpea intercrop using APSIM. Agric Water Manag 177:317–328.  https://doi.org/10.1016/j.agwat.2016.08.021 CrossRefGoogle Scholar
  51. Chimonyo VGP, Modi AT, Mabhaudhi T (2015) Perspective on crop modelling in the management of intercropping systems. Arch Agron Soil Sci 61:1511–1529.  https://doi.org/10.1080/03650340.2015.1017816 CrossRefGoogle Scholar
  52. Colbach N, Biju-Duval L, Gardarin A et al (2014a) The role of models for multicriteria evaluation and multiobjective design of cropping systems for managing weeds. Weed Res 54:541–555.  https://doi.org/10.1111/wre.12112 CrossRefGoogle Scholar
  53. Colbach N, Collard A, Guyot SHM, Mézière D, Munier-Jolain N (2014b) Assessing innovative sowing patterns for integrated weed management with a 3D crop:weed competition model. Eur J Agron 53:74–89.  https://doi.org/10.1016/j.eja.2013.09.019 CrossRefGoogle Scholar
  54. Corre-Hellou G, Brisson N, Launay M et al (2007) Effect of root depth penetration on soil nitrogen competitive interactions and dry matter production in pea-barley intercrops given different soil nitrogen supplies. Field Crop Res 103:76–85.  https://doi.org/10.1016/j.fcr.2007.04.008 CrossRefGoogle Scholar
  55. Corre-Hellou G, Faure M, Launay M et al (2009) Adaptation of the STICS intercrop model to simulate crop growth and N accumulation in pea-barley intercrops. Field Crop Res 113:72–81.  https://doi.org/10.1016/j.fcr.2009.04.007 CrossRefGoogle Scholar
  56. Costanzo A, Bàrberi P (2014) Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review. Agron Sustain Dev 34:327–348.  https://doi.org/10.1007/s13593-013-0178-1 CrossRefGoogle Scholar
  57. Craufurd PQ, Vadez V, Jagadish SVK et al (2013) Crop science experiments designed to inform crop modeling. Agric For Meteorol 170:8–18.  https://doi.org/10.1016/j.agrformet.2011.09.003 CrossRefGoogle Scholar
  58. Creissen HE, Jorgensen TH, Brown JKM (2016) Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes. Crop Prot 85:1–8.  https://doi.org/10.1016/j.cropro.2016.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  59. DeJong TM, Da Silva D, Vos J, Escobar-Gutiérrez AJ (2011) Using functional-structural plant models to study, understand and integrate plant development and ecophysiology. Ann Bot 108:987–989.  https://doi.org/10.1093/aob/mcr257 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Dong N, Tang M-M, Zhang W-P et al (2018) Temporal differentiation of crop growth as one of the drivers of intercropping yield advantage. Sci Rep 8:3110.  https://doi.org/10.1038/s41598-018-21414-w CrossRefPubMedPubMedCentralGoogle Scholar
  61. Dornbusch T, Baccar R, Watt J et al (2011) Plasticity of winter wheat modulated by sowing date, plant population density and nitrogen fertilisation: dimensions and size of leaf blades, sheaths and internodes in relation to their position on a stem. Field Crop Res 121:116–124.  https://doi.org/10.1016/j.fcr.2010.12.004 CrossRefGoogle Scholar
  62. Duchene O, Vian J-F, Celette F (2017) Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric Ecosyst Environ 240:148–161.  https://doi.org/10.1016/j.agee.2017.02.019 CrossRefGoogle Scholar
  63. Dunbabin VM, Postma JA, Schnepf A et al (2013) Modelling root-soil interactions using three-dimensional models of root growth, architecture and function. Plant Soil 372:93–124.  https://doi.org/10.1007/s11104-013-1769-y CrossRefGoogle Scholar
  64. Durand J-L, Andrieu B, Barillot R, et al (2016) Designing and improving mixed grasslands: advances made in modelling forage variety performance. Fourrages 21–28Google Scholar
  65. Duru M, Therond O, Fares M (2015) Designing agroecological transitions; a review. Agron Sustain Dev 35:1237–1257.  https://doi.org/10.1007/s13593-015-0318-x CrossRefGoogle Scholar
  66. Ehrmann J, Ritz K (2014) Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376:1–29.  https://doi.org/10.1007/s11104-013-1921-8 CrossRefGoogle Scholar
  67. Escobar-Gutiérrez AJ, Combes D, Rakocevic M, de Berranger C, Eprinchard-Ciesla A, Sinoquet H, Varlet-Grancher C (2009) Functional relationships to estimate Morphogenetically Active Radiation (MAR) from PAR and solar broadband irradiance measurements: the case of a sorghum crop. Agric For Meteorol 149:1244–1253.  https://doi.org/10.1016/j.agrformet.2009.02.011 CrossRefGoogle Scholar
  68. Essah SYE, Stoskopf NC (2002) Mixture performance of phenotypically contrasting barley cultivars. Can J Plant Sci 82:1–6.  https://doi.org/10.4141/P01-043 CrossRefGoogle Scholar
  69. Evans MR, Grimm V, Johst K, Knuuttila T, de Langhe R, Lessells CM, Merz M, O’Malley MA, Orzack SH, Weisberg M, Wilkinson DJ, Wolkenhauer O, Benton TG (2013) Do simple models lead to generality in ecology? Trends Ecol Evol 28:578–583.  https://doi.org/10.1016/j.tree.2013.05.022 CrossRefPubMedGoogle Scholar
  70. Evers JB, Bastiaans L (2016) Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling. J Plant Res 129:339–351.  https://doi.org/10.1007/s10265-016-0807-2 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Evers JB, Letort V, Renton M, Kang M (2018a) Computational botany: advancing plant science through functional–structural plant modelling. Ann Bot 121:767–772.  https://doi.org/10.1093/aob/mcy050 CrossRefGoogle Scholar
  72. Evers JB, van der Werf W, Stomph TJ, et al (2018b) Understanding and optimizing species mixtures using functional-structural plant modelling. J Exp Bot doi:  https://doi.org/10.1093/jxb/ery288
  73. Evers JB, Vos J, Andrieu B, Struik PC (2006) Cessation of tillering in spring wheat in relation to light interception and red: far-red ratio. Ann Bot 97:649–658.  https://doi.org/10.1093/aob/mc1020 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Faverjon L, Escobar-Gutiérrez A, Litrico I, Julier B, Louarn G (2018) A generic individual-based model can predict yield, nitrogen content, and species abundance in experimental grassland communities. J Exp Bot.  https://doi.org/10.1093/jxb/ery323
  75. Fayaud B, Coste F, Corre-Hellou G, Gardarin A, Dürr C (2014) Modelling early growth under different sowing conditions: a tool to predict variations in intercrop early stages. Eur J Agron 52:180–190.  https://doi.org/10.1016/j.eja.2013.09.009 CrossRefGoogle Scholar
  76. Finckh MR, Gacek ES, Goyeau H et al (2000) Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20:813–837CrossRefGoogle Scholar
  77. Fletcher AL, Kirkegaard JA, Peoples MB, Robertson MJ, Whish J, Swan AD (2016) Prospects to utilise intercrops and crop variety mixtures in mechanised, rain-fed, temperate cropping systems. Crop Pasture Sci 67:1252.  https://doi.org/10.1071/CP16211 CrossRefGoogle Scholar
  78. Fletcher A, McNee M, Ogden G, Robertson M (2015) The residual N benefits of temporary intercropping field pea with wheat. In: Acuña T, Moeller C, Parsons D, Harrison M (eds) Building productive, diverse and sustainable landscapes. Harrison. Proceedings of the 17th Australian Agronomy Conference. Hobart, Tas, pp 987–990Google Scholar
  79. Fourcaud T, Zhang X, Stokes A et al (2008) Plant growth modelling and applications: the increasing importance of plant architecture in growth models. Ann Bot 101:1053–1063.  https://doi.org/10.1093/aob/mcn050 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Fournier C, Andrieu B, Ljutovac S, Saint-Jean S (2003) ADEL-wheat: a 3D architectural model of wheat development. In: Hu BG, Jaeger M (eds). Beijing, pp 54–63Google Scholar
  81. Gaba S, Alignier A, Aviron S, et al (2018) Ecology for sustainable and multifunctional agriculture. In: Gaba S, Smith B, Lichtfouse E (eds) Sustainable agriculture reviews 28: ecology for agriculture. pp 1–46Google Scholar
  82. Gaba S, Lescourret F, Boudsocq S, Enjalbert J, Hinsinger P, Journet EP, Navas ML, Wery J, Louarn G, Malézieux E, Pelzer E, Prudent M, Ozier-Lafontaine H (2015) Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agron Sustain Dev 35:607–623.  https://doi.org/10.1007/s13593-014-0272-z CrossRefGoogle Scholar
  83. Gao Y, Duan A, Qiu X et al (2010) Distribution of roots and root length density in a maize/soybean strip intercropping system. Agric Water Manag 98:199–212.  https://doi.org/10.1016/j.agwat.2010.08.021 CrossRefGoogle Scholar
  84. Garcia-Barrios L, Mayer-Foulkes D, Franco M et al (2001) Development and validation of a spatially explicit individual-based mixed crop growth model. Bull Math Biol 63:507–526.  https://doi.org/10.1006/bulm.2000.0226 CrossRefPubMedGoogle Scholar
  85. Gérard F, Blitz-Frayret C, Hinsinger P, Pagès L (2017) Modelling the interactions between root system architecture, root functions and reactive transport processes in soil. Plant Soil 413:161–180.  https://doi.org/10.1007/s11104-016-3092-x CrossRefGoogle Scholar
  86. Gérard F, Gatz-Miller H, Bea S, et al (2018) Coupling reactive transport processes with root system architecture and functions: principles and application examples. In: Terrestrial systems research: monitoring, prediction & high performance computing. Bonn, GermanyGoogle Scholar
  87. Gérard F, Mayer KU, Hodson MJ, Ranger J (2008) Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochim Cosmochim Acta 72:741–758.  https://doi.org/10.1016/j.gca.2007.11.010 CrossRefGoogle Scholar
  88. Gigot C, de Vallavieille-Pope C, Huber L, Saint-Jean S (2014) Using virtual 3-D plant architecture to assess fungal pathogen splash dispersal in heterogeneous canopies: a case study with cultivar mixtures and a non-specialized disease causal agent. Ann Bot 114:863–875.  https://doi.org/10.1093/aob/mcu098 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Gliessman SR (2014) Agroecology: the ecology of sustainable food systems, 3rd edn. CRC Press Inc, Boca RatonCrossRefGoogle Scholar
  90. Godin C (2000) Representing and encoding plant architecture: a review. Ann For Sci 57:413–438CrossRefGoogle Scholar
  91. Godin C, Caraglio Y (1998) A multiscale model of plant topological structures. J Theor Biol 191:1–46.  https://doi.org/10.1006/jtbi.1997.0561 CrossRefPubMedGoogle Scholar
  92. Goldberg DE (1990) Components of resource competition in plant communities. In: Grace JB, Tilman D (eds) Perspectives on plant competition. pp 27–49Google Scholar
  93. Gonkhamdee S, Pierret A, Maeght J-L et al (2010) Effects of corn (Zea mays L.) on the local and overall root development of young rubber tree (Hevea brasiliensis Muel. Arg). Plant Soil 334:335–351.  https://doi.org/10.1007/s11104-010-0386-2 CrossRefGoogle Scholar
  94. Gou F, van Ittersum MK, Simon E, Leffelaar PA, van der Putten PEL, Zhang L, van der Werf W (2017a) Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE. Eur J Agron 84:125–139.  https://doi.org/10.1016/j.eja.2016.10.014 CrossRefGoogle Scholar
  95. Gou F, van Ittersum MK, van der Werf W (2017b) Simulating potential growth in a relay-strip intercropping system: model description, calibration and testing. Field Crop Res 200:122–142.  https://doi.org/10.1016/j.fcr.2016.09.015 CrossRefGoogle Scholar
  96. Gou F, van Ittersum MK, Wang G et al (2016) Yield and yield components of wheat and maize in wheat-maize intercropping in the Netherlands. Eur J Agron 76:17–27.  https://doi.org/10.1016/j.eja.2016.01.005 CrossRefGoogle Scholar
  97. Goudriaan J (1977) Crop micrometeorology: a simulation study. Pudoc, Center for Agricultural Publishing and Documentation, WageningenGoogle Scholar
  98. Grimm V, Railsback S (2005) Individual-based modeling and ecology, Princeton University Press. Princeton; USAGoogle Scholar
  99. Gunes A, Bagci EG, Inal A (2007) Interspecific facilitative root interactions and rhizosphere effects on phosphorus and iron nutrition between mixed grown chickpea and barley. J Plant Nutr 30:1455–1469.  https://doi.org/10.1080/01904160701555648 CrossRefGoogle Scholar
  100. Han G, Lang J, Sun Y et al (2016) Intercropping of rice varieties increases the efficiency of blast control through reduced disease occurrence and variability. J Integr Agric 15:795–802.  https://doi.org/10.1016/S2095-3119(15)61055-3 CrossRefGoogle Scholar
  101. Hatt S, Boeraeve F, Artru S et al (2018) Spatial diversification of agroecosystems to enhance biological control and other regulating services: an agroecological perspective. Sci Total Environ 621:600–611.  https://doi.org/10.1016/j.scitotenv.2017.11.296 CrossRefPubMedGoogle Scholar
  102. Hauggaard-Nielsen H, Gooding M, Ambus P, Corre-Hellou G, Crozat Y, Dahlmann C, Dibet A, von Fragstein P, Pristeri A, Monti M, Jensen ES (2009) Pea-barley intercropping for efficient symbiotic N-2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crop Res 113:64–71.  https://doi.org/10.1016/j.fcr.2009.04.009 CrossRefGoogle Scholar
  103. Hautier Y, Seabloom EW, Borer ET, et al (2014) Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508:521-+. doi:  https://doi.org/10.1038/nature13014
  104. Hemmerling R, Kniemeyer O, Lanwert D, Kurth W, Buck-Sorlin G (2008) The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition. Funct Plant Biol 35:739–750.  https://doi.org/10.1071/FP08052 CrossRefGoogle Scholar
  105. Hinsinger P, Betencourt E, Bernard L et al (2011) P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156:1078–1086.  https://doi.org/10.1104/pp.111.175331 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Holmgren M, Scheffer M (2010) Strong facilitation in mild environments: the stress gradient hypothesis revisited. J Ecol 98:1269–1275.  https://doi.org/10.1111/j.1365-2745.2010.01709.x CrossRefGoogle Scholar
  107. Holzworth DP, Huth NI, deVoil PG et al (2014) APSIM—evolution towards a new generation of agricultural systems simulation. Environ Model Softw 62:327–350.  https://doi.org/10.1016/j.envsoft.2014.07.009 CrossRefGoogle Scholar
  108. Hughes AR, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Natl Acad Sci 101:8998–9002.  https://doi.org/10.1073/pnas.0402642101 CrossRefPubMedGoogle Scholar
  109. Huston M, Deangelis D, Post W (1988) New computer-models unify ecological theory—computer-simulations show that many ecological patterns can be explained by interactions among individual organisms. Bioscience 38:682–691.  https://doi.org/10.2307/1310870 CrossRefGoogle Scholar
  110. Jeuffroy M-H, Casadebaig P, Debaeke P et al (2014) Agronomic model uses to predict cultivar performance in various environments and cropping systems. A review. Agron Sustain Dev 34:121–137.  https://doi.org/10.1007/s13593-013-0170-9 CrossRefGoogle Scholar
  111. Kattge J, Diaz S, Lavorel S et al (2011) TRY—a global database of plant traits. Glob Chang Biol 17:2905–2935.  https://doi.org/10.1111/j.1365-2486.2011.02451.x CrossRefPubMedCentralGoogle Scholar
  112. Keating BA, Thorburn PJ (2018) Modelling crops and cropping systems—evolving purpose, practice and prospects. Eur J Agron.  https://doi.org/10.1016/j.eja.2018.04.007
  113. Keddy P (1992) Assembly and response rules—two goals for predictive community ecology. J Veg Sci 3:157–164.  https://doi.org/10.2307/3235676 CrossRefGoogle Scholar
  114. Kiaer LP, Boesen NR (2018) Trait plasticity and G x E challenges when breeding for mixture-ideotypes. Kassel University Press GmbH, Witzenhausen, Germany, pp 3–6Google Scholar
  115. Kiaer LP, Skovgaard IM, Ostergard H (2009) Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crop Res 114:361–373.  https://doi.org/10.1016/j.fcr.2009.09.006 CrossRefGoogle Scholar
  116. Knörzer H, Graeff-Hönninger S, Müller BU, Piepho HP, Claupein W (2010) A modeling approach to simulate effects of intercropping and interspecific competition in arable crops. Int J Inf Syst Soc Change 1:44–65.  https://doi.org/10.4018/jissc.2010100104 CrossRefGoogle Scholar
  117. Knörzer H, Lawes R, Robertson M et al (2011) Evaluation and performance of the APSIM crop growth model for German winter wheat, maize and field pea varieties in monocropping and intercropping systems. J Agric Sci Technol B 1:698–717Google Scholar
  118. Kremen C, Miles A (2012) Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc 17.  https://doi.org/10.5751/ES-05035-170440
  119. Launay M, Brisson N, Satger S et al (2009) Exploring options for managing strategies for pea-barley intercropping using a modeling approach. Eur J Agron 31:85–98.  https://doi.org/10.1016/j.eja.2009.04.002 CrossRefGoogle Scholar
  120. Lechenet M, Dessaint F, Py G et al (2017) Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat Plants 3:17008.  https://doi.org/10.1038/nplants.2017.8 CrossRefPubMedGoogle Scholar
  121. Li L, Sun J, Zhang F et al (2001) Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crop Res 71:123–137.  https://doi.org/10.1016/S0378-4290(01)00156-3 CrossRefGoogle Scholar
  122. Li L, Tilman D, Lambers H, Zhang F-S (2014) Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol 203:63–69.  https://doi.org/10.1111/nph.12778 CrossRefPubMedGoogle Scholar
  123. Li L, Zhang FS, Li XL, Christie P, Sun J, Yang S, Tang C (2003) Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutr Cycl Agroecosyst 65:61–71.  https://doi.org/10.1023/A:1021885032241 CrossRefGoogle Scholar
  124. Lieth H (1974) Purposes of a phenology book. In: Phenology and seasonality modeling. Springer, Berlin, Heidelberg, pp 3–19CrossRefGoogle Scholar
  125. Li-li M, Li-zhen Z, Si-ping Z et al (2015) Resource use efficiency, ecological intensification and sustainability of intercropping systems. J Integr Agric 14:1542–1550.  https://doi.org/10.1016/S2095-3119(15)61039-5 CrossRefGoogle Scholar
  126. Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61:183–193.  https://doi.org/10.1525/bio.2011.61.3.4 CrossRefGoogle Scholar
  127. Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5:396–410Google Scholar
  128. Litrico I, Violle C (2015) Diversity in plant breeding a new conceptual framework. Trends Plant Sci 20:604–613.  https://doi.org/10.1016/j.tplants.2015.07.007 CrossRefPubMedGoogle Scholar
  129. Liu B, Asseng S, Muller C, et al (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Clim Change 6:1130-+. doi:  https://doi.org/10.1038/NCLIMATE3115
  130. Liu J, Ashton P (1995) Individual-based simulation-models for forest succession and management. For Ecol Manag 73:157–175.  https://doi.org/10.1016/0378-1127(94)03490-N CrossRefGoogle Scholar
  131. Liu X, Rahman T, Yang F et al (2017) PAR interception and utilization in different maize and soybean intercropping patterns. PLoS One 12:e0169218.  https://doi.org/10.1371/journal.pone.0169218 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Long Q, Kurth W, Pradal C (2018) An architecture for the integration of different functional and structural plant models. In: IEEA. Beijing, China, pp 107–113Google Scholar
  133. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76.  https://doi.org/10.1038/35083573 CrossRefPubMedGoogle Scholar
  134. Louarn G, Escobar-Gutiérrez A, Migault V, et al (2014) “Virtual grassland”: an individual-based model to deal with grassland community dynamics under fluctuating water and nitrogen availability. In: Hopkins A, Collins RP, Fraser MD, et al. (eds). Aberystwyth, Wales, pp 242–244Google Scholar
  135. Lv Y, Francis CA, Wue P et al (2014) Maize-soybean intercropping interactions above and below ground. Crop Sci 54:914–922.  https://doi.org/10.2135/cropsci2013.06.0403 CrossRefGoogle Scholar
  136. Macarthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting Species. Am Nat 101:377-+.  https://doi.org/10.1086/282505
  137. Machado S (2009) Does intercropping have a role in modern agriculture? J Soil Water Conserv 64:55A–57A.  https://doi.org/10.2489/jswc.64.2.55A CrossRefGoogle Scholar
  138. Malézieux E, Crozat Y, Dupraz C et al (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62.  https://doi.org/10.1051/agro:2007057 CrossRefGoogle Scholar
  139. Mao L, Zhang L, Li W et al (2012) Yield advantage and water saving in maize/pea intercrop. Field Crop Res 138:11–20.  https://doi.org/10.1016/j.fcr.2012.09.019 CrossRefGoogle Scholar
  140. Martre P, He J, Le Gouis J, Semenov MA (2015) In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management. J Exp Bot 66:3581–3598.  https://doi.org/10.1093/jxb/erv049 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production. Ann Bot 95:549–567.  https://doi.org/10.1093/aob/mci052 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Montazeaud G, Violle C, Fréville H et al (2017) Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs. Plant Soil:1–16.  https://doi.org/10.1007/s11104-017-3496-2
  143. Monteith J (1977) Climate and efficiency of crop production in Britain. Philos Trans R Soc Lond Ser B-Biol Sci 281:277–294.  https://doi.org/10.1098/rstb.1977.0140 CrossRefGoogle Scholar
  144. Monzon JP, Sadras VO, Abbate PA, Caviglia OP (2007) Modelling management strategies for wheat-soybean double crops in the south-eastern Pampas. Field Crop Res 101:44–52.  https://doi.org/10.1016/j.fcr.2006.09.007 CrossRefGoogle Scholar
  145. Munier-Jolain N, Guyot S, Colbach N (2013) A 3D model for light interception in heterogeneous crop:weed canopies: model structure and evaluation. Ecol Model 250:101–110.  https://doi.org/10.1016/j.ecolmodel.2012.10.023 CrossRefGoogle Scholar
  146. Munz S, Claupein W, Graeff-Hoenninger S (2014) Growth of bean strip-intercropped with maize: evaluation of the CROPGRO model. Agron J 106:2235–2247.  https://doi.org/10.2134/agronj13.0579 CrossRefGoogle Scholar
  147. Nicotra AB, Atkin OK, Bonser SP et al (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692.  https://doi.org/10.1016/j.tplants.2010.09.008 CrossRefPubMedGoogle Scholar
  148. Ning T, Zheng Y, Han H, Jiang G, Li Z (2012) Nitrogen uptake, biomass yield and quality of intercropped spring- and summer-sown maize at different nitrogen levels in the North China Plain. Biomass Bioenergy 47:91–98.  https://doi.org/10.1016/j.biombioe.2012.09.059 CrossRefGoogle Scholar
  149. Pagès L (2011) Links between root developmental traits and foraging performance. Plant Cell Environ 34:1749–1760.  https://doi.org/10.1111/j.1365-3040.2011.02371.x CrossRefPubMedGoogle Scholar
  150. Pagès L, Becel C, Boukcim H et al (2014) Calibration and evaluation of ArchiSimple, a simple model of root system architecture. Ecol Model 290:76–84.  https://doi.org/10.1016/j.ecolmodel.2013.11.014 CrossRefGoogle Scholar
  151. Passioura JB (1996) Simulation models: science; snake oil, education, or engineering? Agron J 88:690–694.  https://doi.org/10.2134/agronj1996.00021962008800050002x CrossRefGoogle Scholar
  152. Pérot T, Picard N (2012) Mixture enhances productivity in a two-species forest: evidence from a modeling approach. Ecol Res 27:83–94.  https://doi.org/10.1007/s11284-011-0873-9 CrossRefGoogle Scholar
  153. Postma JA, Lynch JP (2012) Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures. Ann Bot 110:521–534.  https://doi.org/10.1093/aob/mcs082 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Potochnik A, McGill B (2012) The limitations of hierarchical organization. Philos Sci 79:120–140.  https://doi.org/10.1086/663237 CrossRefGoogle Scholar
  155. Potting RPJ, Perry JN, Powell W (2005) Insect behavioural ecology and other factors affecting the control efficacy of agro-ecosystem diversification strategies. Ecol Model 182:199–216.  https://doi.org/10.1016/j.ecolmodel.2004.07.017 CrossRefGoogle Scholar
  156. Pradal C, Boudon F, Nouguier C et al (2009) PlantGL: a python-based geometric library for 3D plant modelling at different scales. Graph Model 71:1–21.  https://doi.org/10.1016/j.gmod.2008.10.001 CrossRefGoogle Scholar
  157. Pradal C, Fournier C, Valduriez P, Cohen-Boulakia S (2015) OpenAlea: scientific workflows combining data analysis and simulation. In: Gupta A, Rathbun S (eds). Univ Calif San Diego, San Diego, CAGoogle Scholar
  158. Pronk AA, Goudriaan J, Stilma E, Challa H (2003) A simple method to estimate radiation interception by nursery stock conifers: a case study of eastern white cedar. Njas-Wagening J Life Sci 51:279–295.  https://doi.org/10.1016/S1573-5214(03)80020-9 CrossRefGoogle Scholar
  159. Purves DW, Lichstein JW, Strigul N, Pacala SW (2008) Predicting and understanding forest dynamics using a simple tractable model. PNAS 105:17018–17022.  https://doi.org/10.1073/pnas.0807754105 CrossRefPubMedGoogle Scholar
  160. Railsback S, Grimm V (2012) Agent-based and individual-based modeling—a practical introduction. Princeton University Press, PrincetonGoogle Scholar
  161. Raseduzzaman M, Jensen ES (2017) Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur J Agron 91:25–33.  https://doi.org/10.1016/j.eja.2017.09.009 CrossRefGoogle Scholar
  162. Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303.  https://doi.org/10.1007/s13593-011-0022-4 CrossRefGoogle Scholar
  163. Raynaud X, Jaillard B, Leadley PW (2008) Plants may alter competition by modifying nutrient bioavailability in rhizosphere: a modeling approach. Am Nat 171:44–58.  https://doi.org/10.1086/523951 CrossRefPubMedGoogle Scholar
  164. Reckling M (2016) A cropping system assessment framework—evaluating effects of introducing legumes into crop rotations. Eur J Agron 76:186–197CrossRefGoogle Scholar
  165. Reichman OJ, Jones MB, Schildhauer MP (2011) Challenges and opportunities of open data in ecology. Science 331:703–705.  https://doi.org/10.1126/science.1197962 CrossRefPubMedGoogle Scholar
  166. Renton M, Chauhan BS (2017) Modelling crop-weed competition: why, what, how and what lies ahead? Crop Prot 95:101–108.  https://doi.org/10.1016/j.cropro.2016.09.003 CrossRefGoogle Scholar
  167. Reynolds M, Kropff M, Crossa J, Koo J, Kruseman G, Molero Milan A, Rutkoski J, Schulthess U, Balwinder-Singh, Sonder K, Tonnang H, Vadez V (2018) Role of modelling in international crop research: overview and some case studies. Agronomy 8:291.  https://doi.org/10.3390/agronomy8120291 CrossRefGoogle Scholar
  168. Robert C, Bancal MO, Nicolas P, Lannou C, Ney B (2004) Analysis and modelling of effects of leaf rust and Septoria tritici blotch on wheat growth. J Exp Bot 55:1079–1094.  https://doi.org/10.1093/jxb/erh108 CrossRefPubMedGoogle Scholar
  169. Röhrig M, Stutzel H, Alt C (1999) A three-dimensional approach to modeling light interception in heterogeneous canopies. Agron J 91:1024–1032CrossRefGoogle Scholar
  170. Rosenzweig C, Jones JW, Hatfield JL et al (2013) The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies. Agric For Meteorol 170:166–182.  https://doi.org/10.1016/j.agrformet.2012.09.011 CrossRefGoogle Scholar
  171. Rötter RP, Appiah M, Fichtler E et al (2018) Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes—a review. Field Crop Res 221:142–156.  https://doi.org/10.1016/j.fcr.2018.02.023 CrossRefGoogle Scholar
  172. Seidel SJ, Palosuo T, Thorburn P, Wallach D (2018) Towards improved calibration of crop models—where are we now and where should we go? Eur J Agron 94:25–35.  https://doi.org/10.1016/j.eja.2018.01.006 CrossRefGoogle Scholar
  173. Sinclair TR, Seligman N (2000) Criteria for publishing papers on crop modeling. Field Crop Res 68:165–172.  https://doi.org/10.1016/S0378-4290(00)00105-2 CrossRefGoogle Scholar
  174. Sinclair TR, Seligman NG (1996) Crop modeling: from infancy to maturity. Agron J 88:698–704.  https://doi.org/10.2134/agronj1996.00021962008800050004x CrossRefGoogle Scholar
  175. Singh AK, Goyal V, Mishra AK, Parihar SS (2013) Validation of CropSyst simulation model for direct seeded rice-wheat cropping system. Curr Sci 104:1324–1331Google Scholar
  176. Sinoquet H, Le Roux X, Adam B et al (2001) RATP: a model for simulating the spatial distribution of radiation absorption, transpiration and photosynthesis within canopies: application to an isolated tree crown. Plant Cell Environ 24:395–406.  https://doi.org/10.1046/j.1365-3040.2001.00694.x CrossRefGoogle Scholar
  177. Sinoquet H, Moulia B, Gastal F et al (1990) Modeling the radiative balance of the components of a well-mixed canopy—application to a white clover-tall fescue mixture. Acta Oecologica-Int J Ecol 11:469–486Google Scholar
  178. Soussana J-F, Maire V, Gross N et al (2012) Gemini: a grassland model simulating the role of plant traits for community dynamics and ecosystem functioning. Parameterization and evaluation. Ecol Model 231:134–145.  https://doi.org/10.1016/j.ecolmodel.2012.02.002 CrossRefGoogle Scholar
  179. Stoll P, Weiner J (2000) A neighborhood view of interactions among individual plants. In: Dieckmann U, Law R, Metz JAJ (eds) The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, pp 11–27Google Scholar
  180. Tooker JF, Frank SD (2012) Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J Appl Ecol 49:974–985.  https://doi.org/10.1111/j.1365-2664.2012.02173.x CrossRefGoogle Scholar
  181. Ustin SL, Gamon JA (2010) Remote sensing of plant functional types. New Phytol 186:795–816.  https://doi.org/10.1111/j.1469-8137.2010.03284.x CrossRefPubMedGoogle Scholar
  182. Vandermeer JH (1989) The ecology of intercropping. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  183. Vidal T, Gigot C, de Vallavieille-Pope C et al (2018) Contrasting plant height can improve the control of rain-borne diseases in wheat cultivar mixture: modelling splash dispersal in 3-D canopies. Ann Bot 121:1299–1308.  https://doi.org/10.1093/aob/mcy024 CrossRefPubMedGoogle Scholar
  184. Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, de Visser PHB (2010) Functional-structural plant modelling: a new versatile tool in crop science. J Exp Bot 61:2101–2115.  https://doi.org/10.1093/jxb/erp345 CrossRefPubMedGoogle Scholar
  185. Wang Z, Zhao X, Wu P, He J, Chen X, Gao Y, Cao X (2015) Radiation interception and utilization by wheat/maize strip intercropping systems. Agric For Meteorol 204:58–66.  https://doi.org/10.1016/j.agrformet.2015.02.004 CrossRefGoogle Scholar
  186. Wezel A, Casagrande M, Celette F et al (2014) Agroecological practices for sustainable agriculture. A review. Agron Sustain Dev 34:1–20.  https://doi.org/10.1007/s13593-013-0180-7 CrossRefGoogle Scholar
  187. Wilson G, Bryan J, Cranston K et al (2017) Good enough practices in scientific computing. PLoS Comput Biol 13:e1005510.  https://doi.org/10.1371/journal.pcbi.1005510 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Wilson J (1988) Shoot competition and root competition. J Appl Ecol 25:279–296.  https://doi.org/10.2307/2403626 CrossRefGoogle Scholar
  189. Wu L, McGechan MB, McRoberts N et al (2007) SPACSYS: integration of a 3D root architecture component to carbon, nitrogen and water cycling—model description. Ecol Model 200:343–359.  https://doi.org/10.1016/j.ecolmodel.2006.08.010 CrossRefGoogle Scholar
  190. Yang F, Liao D, Wu X et al (2017) Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crop Res 203:16–23.  https://doi.org/10.1016/j.fcr.2016.12.007 CrossRefGoogle Scholar
  191. Yu Y, Stomph T-J, Makowski D, van der Werf W (2015) Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a meta-analysis. Field Crop Res 184:133–144.  https://doi.org/10.1016/j.fcr.2015.09.010 CrossRefGoogle Scholar
  192. Zeller SL, Kalinina O, Flynn DFB, Schmid B (2012) Mixtures of genetically modified wheat lines outperform monocultures. Ecol Appl 22:1817–1826CrossRefGoogle Scholar
  193. Zhang L, Hu Z, Fan J et al (2014) A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems. Front Earth Sci 8:599–609CrossRefGoogle Scholar
  194. Zhang W-P, Liu G-C, Sun J-H, Fornara D, Zhang LZ, Zhang FF, Li L (2017) Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Funct Ecol 31:469–479.  https://doi.org/10.1111/1365-2435.12732 CrossRefGoogle Scholar
  195. Zhang X, Xu M, Liu J et al (2016) Greenhouse gas emissions and stocks of soil carbon and nitrogen from a 20-year fertilised wheat-maize intercropping system: a model approach. J Environ Manag 167:105–114.  https://doi.org/10.1016/j.jenvman.2015.11.014 CrossRefGoogle Scholar
  196. Zhu J, van der Werf W, Anten NPR, Vos J, Evers JB (2015) The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytol 207:1213–1222.  https://doi.org/10.1111/nph.13416 CrossRefPubMedGoogle Scholar
  197. Zhu J, van der Werf W, Vos J, Anten NPR, van der Putten PEL, Evers JB (2016) High productivity of wheat intercropped with maize is associated with plant architectural responses. Ann Appl Biol 168:357–372.  https://doi.org/10.1111/aab.12268 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Noémie Gaudio
    • 1
    Email author
  • Abraham J. Escobar-Gutiérrez
    • 2
  • Pierre Casadebaig
    • 1
  • Jochem B. Evers
    • 3
  • Frédéric Gérard
    • 4
  • Gaëtan Louarn
    • 2
  • Nathalie Colbach
    • 5
  • Sebastian Munz
    • 6
  • Marie Launay
    • 7
  • Hélène Marrou
    • 8
  • Romain Barillot
    • 2
  • Philippe Hinsinger
    • 4
  • Jacques-Eric Bergez
    • 1
  • Didier Combes
    • 2
  • Jean-Louis Durand
    • 2
  • Ela Frak
    • 2
  • Loïc Pagès
    • 9
  • Christophe Pradal
    • 10
    • 11
  • Sébastien Saint-Jean
    • 12
  • Wopke Van Der Werf
    • 3
  • Eric Justes
    • 8
  1. 1.AGIR, University of Toulouse, INRACastanet-TolosanFrance
  2. 2.INRA, URP3F, Equipe Ecophysiologie des Plantes FourragèresLusignanFrance
  3. 3.Centre for Crop Systems AnalysisWageningen University and ResearchWageningenthe Netherlands
  4. 4.Eco&Sols, University Montpellier, CIRAD, INRA, IRD, SupAgroMontpellierFrance
  5. 5.Agroécologie, AgroSup Dijon, INRA, University Bourgogne Franche-ComtéDijonFrance
  6. 6.Department of Agronomy, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
  7. 7.INRA, US1116 AgroClimAvignon Cedex 9France
  8. 8.CIRAD, UMR SYSTEM, University Montpellier, CIHEAM-IAMM, CIRAD, INRA, Montpellier SupagroMontpellierFrance
  9. 9.INRA, Centre PACA, UR PSH 1115Avignon Cedex 9France
  10. 10.AGAP, University Montpellier, CIRAD, INRA, SupAgroMontpellierFrance
  11. 11.CIRAD, AGAP, and INRIA Zenith, Univ MontpellierMontpellierFrance
  12. 12.UMR ECOSYS INRA, AgroParisTech, Université Paris-SaclayThiverval-GrignonFrance

Personalised recommendations