Advertisement

Transition to legume-based farming systems requires stable outlets, learning, and peer-networking

  • Marie MawoisEmail author
  • Andréa Vidal
  • Eva Revoyron
  • Marion Casagrande
  • Marie-Hélène Jeuffroy
  • Marianne Le Bail
Research Article
  • 2 Downloads

Abstract

Legume cultivation has been declining for several decades in France and in Europe as a whole. This is the result of the agri-food system lock-in around major crops, which has led to a strong simplification of cropping systems and a specialization of territories, in which legumes have been marginalized. Introducing or increasing legume production on farms has become a key issue in many European countries. Studies investigating the process of change of farmers growing legumes are missing. We analyze here the trajectories of farms cultivating legumes, with a view to understanding how and why farmers have modified their practices over the long term and to what extent this can help to support further introduction of legumes on farms. We interviewed 26 farmers growing legumes, in two French regions (Burgundy and Pays de la Loire), to understand the changes of their practices in terms of legume introduction over time. We developed a methodology to analyze farmers’ trajectories based on the identification of (1) agronomic-coherence phases during which practices are stable and (2) the process of change from one coherence phase to another. The analysis of the 26 trajectories allowed us to distinguish four transitional pathways according to the speed of change, the type of legumes cultivated, and the level of legume introduction. Here, we show for the first time that the transition to a high and sustainable level of legume introduction in farms, whether progressive or as a rupture, required the combination of three levers: (1) the stability of outlets (on-farm consumption or market opportunities), (2) knowledge and local references on the preceding crop effect of legumes, and (3) the farmer’s involvement in peer-networks. Our results constitute a fruitful pathway to encouraging changes for both individual and collective support for farmers to facilitate the introduction of legumes.

Keywords

Changes of practices Innovation Diversification Trajectory Transitional pathways Agricultural advisory services 

Notes

Acknowledgments

The authors thank the farmers from Burgundy and Pays de la Loire who took part in the survey for giving their time.

Funding information

This study was done with the financial support from the ANR Legitimes—AGOBIOSPHERE program (ANR-13-AGRO-0004).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Altieri M (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74(1–3):19–31.  https://doi.org/10.1016/S0167-8809(99)00028-6 CrossRefGoogle Scholar
  2. Altieri M, Nicholls CI (2012) Agroecology scaling up for food sovereignty and resiliency. In: Lichtfouse, E. (Ed.), Sustain. Agric. Rev., vol. 11. Springer, Netherlands, pp. 1e29. Doi:  https://doi.org/10.1007/978-94-007-5449-2_1
  3. Altieri M, Rosset P (1996) Agroecology and the conversion of large-scale conventional systems to sustainable management. Int J Environ Stud 50:165–185.  https://doi.org/10.1080/00207239608711055 CrossRefGoogle Scholar
  4. Altieri M, Funes-Monzote F, Petersen P (2012) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32(1):1–13.  https://doi.org/10.1007/s13593-011-0065-6 CrossRefGoogle Scholar
  5. Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P (2012) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev 87:52–71.  https://doi.org/10.1111/j.1469-185X.2011.00184.x CrossRefPubMedGoogle Scholar
  6. Caron P, Biénabe E, Hainzelin E (2014) Making transition towards ecological intensification of agriculture a reality: the gaps in and the role of scientific knowledge. Curr Opin Environ Sustain 8:44–52CrossRefGoogle Scholar
  7. Carrouée B, Schneider A, Flénet F, Jeuffroy MH, Nemecek T (2012) Introduction du pois protéagineux dans des rotations à base de céréales à paille et colza: impacts sur les performances économiques et environnementales. Innov Agron 25:125–142Google Scholar
  8. Casagrande M, Lefèvre V, Capitaine M, Peigné J (2015) Participative design of conservation agriculture cropping system in organic agriculture. 5th International Symposium for Farming Systems Design (AGRO2015) In: Proceedings of the 5th International Symposium for farming systems design “Multi-functional farming systems in a changing world”. 2015. 553 pGoogle Scholar
  9. Cerf M, Omon B, Chantre E, Guillot MN, Le Bail M, Lamine C, Olry P (2010) Vers des systèmes économes en intrants : quelles trajectoires et quel accompagnement pour les producteurs en grandes cultures? Innov Agron 8:105–119Google Scholar
  10. Cernay C, Pelzer E, Makowski D (2016) A global experimental dataset for assessing grain legume production. Dryad Digital Repository 3:160084.  https://doi.org/10.1038/sdata.2016.84
  11. Chantre E (2011) Farmers’ learning processes in implementing low-input field crop agriculture: case study of Champagne Berrichonne (Indre, France) during the years 1985–2010. Thesis (PhD), AgroParisTech, Paris Institute for Life, Food and Environmental Sciences, 397ppGoogle Scholar
  12. Chantre E, Cardona A (2014) Trajectories of French field crop farmers moving toward sustainable farming practices: change, learning, and links with the advisory services. Agroec Sustain Food Syst 38(5):573–602.  https://doi.org/10.1080/21683565.2013.876483 CrossRefGoogle Scholar
  13. Chantre E, Cerf M, Le Bail M (2015) Transitional pathways towards input reduction on French field crop farms. Int J Agric Sustain 13(1):69–86.  https://doi.org/10.1080/14735903.2014.945316 CrossRefGoogle Scholar
  14. Darnhofer I, Bellon S, Dedieu B, Milestad R (2010) Adaptiveness to enhance the sustainability of farming systems. A review. Agron Sustain Dev 30(3):545–555.  https://doi.org/10.1051/agro/2009053 CrossRefGoogle Scholar
  15. Darré JP (1985) Les dialogues entre agriculteurs : Etude comparative dans deux villages français, Bretagne et Lauragais. Langues et Sociétés 33(1):43–64 http://www.persee.fr/doc/lsoc_0181-4095_1985_num_33_1_203 CrossRefGoogle Scholar
  16. Darré JP (1994) Pairs et experts dans l’agriculture. Dialogues et production de connaissance pour l’action. Erès, ParisGoogle Scholar
  17. De Schutter O (2010) Report submitted by the special rapporteur on the right to food to the Human Rights Council at the Sixteenth Session of the UN General Assembly, 20 December 2010. United Nations, New YorkGoogle Scholar
  18. Deytieux V, Nemecek T, Knuchel RF, Gaillard G, Munier-Jolain NM (2012) Is integrated weed management efficient for reducing environmental impacts of cropping systems? A case study based on life cycle assessment. Eur J Agron 36:55–65.  https://doi.org/10.1016/j.eja.2011.08.004 CrossRefGoogle Scholar
  19. Dulcire M, (1997) A partnership to achieve an impact : what kind of agronomic research can contribute to the evolution of agricultural practices. Workshop “Linking Participatory Methodologies with People’s Reality”, Brighton, UKGoogle Scholar
  20. Duru M, Therond O, Fares M (2015) Designing agroecological transitions; a review. Agron Sustain Dev 35(4):1237–1257.  https://doi.org/10.1007/s13593-015-0318-x CrossRefGoogle Scholar
  21. Ezzat H, Le Masson P, Weil B (2017) Leading in the unknown with imperfect knowledge: situational creative leadership strategies for ideation management. 24th Innovation and Product Development Management (IPDM) Reykjavik, IcelandGoogle Scholar
  22. Geels FW, Schot J (2007) Typology of sociotechnical transition pathways. Res Policy 36(3):399–417.  https://doi.org/10.1016/j.respol.2007.01.003 CrossRefGoogle Scholar
  23. Girard N (2015) Knowledge at the boundary between science and society: a review of the use of farmers’ knowledge in agricultural development. J Knowl Manag 19(5):949–967.  https://doi.org/10.1108/JKM-02-2015-0049 CrossRefGoogle Scholar
  24. Gliessman SR (2007) The ecology of sustainable food systems, second ed. In: Agroecology CRC Press. CRC Press. 2nd Ed. 384 pGoogle Scholar
  25. Goulet F, Pervanchon F, Conteau C, Cerf M (2008) Les agriculteurs innovent par eux-mêmes pour leurs systèmes de culture, In Reau R and Doré T (éd.). Systèmes de culture innovants et durables: quelles méthodes pour les mettre au point et les évaluer ?. Dijon, Educagri Editions, p. 53–69Google Scholar
  26. Guerra, J., Blesh, J., Schmitt Filho, A.L., Wittman, H., 2013. Pathways to agroecological management through mediated markets in Santa Catarina, Brazil. Elem Sci Anth 5(0):67:1–16.  https://doi.org/10.1525/journal.elementa.248
  27. Hatchuel A, Weil B, Le Masson P (2013) Towards an ontology of design: lessons from C–K design theory and forcing. Res Eng Des 24:147–163.  https://doi.org/10.1007/s00163-016-0233-4 CrossRefGoogle Scholar
  28. Hill SB, MacRae RJ (1995) Conceptual frameworks for the transition from conventional to sustainable agriculture. J Sustain Agric 7(1):81–87.  https://doi.org/10.1300/J064v07n01_07 CrossRefGoogle Scholar
  29. Holt-Giménez E (2010) Grassroots voices: linking farmers’ movements for advocacy and practice. J Peasant Stud 37:203–236CrossRefGoogle Scholar
  30. Huyghe C, Delaby L (2013) Prairies et systèmes fourragers: pâturage, ensilage, foin. Agriproduction (2e ed.). Paris, FRA: Editions France Agricole. http://prodinra.inra.fr/record/282253
  31. Jackson W (2002) Natural systems agriculture: a truly radical alternative. Agric Ecosyst Environ 88:111–117.  https://doi.org/10.1016/S0167-8809(01)00247-X CrossRefGoogle Scholar
  32. Jeuffroy MH, Biarnès V, Cohan JP, Corre-Hellou G, Gastal F, Jouffret P, Juste E, Landé N, Louarn G, Plantureux S, Schneider A, Thibeau P, Morison M, Vertes F (2015) Performances agronomiques et gestion des légumineuses dans les systèmes de productions végétales. Les légumineuses pour des systèmes agricoles et alimentaires durables, Editions Quae, 512 p., 2015, 978-2-7592-2334-3Google Scholar
  33. Kopke U, Nemecek T (2010) Ecological services of faba bean. Field Crop Res 115:217–233.  https://doi.org/10.1016/j.fcr.2009.10.012 CrossRefGoogle Scholar
  34. Kremen C, Iles A, Bacon C (2012) Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol Soc 17(4):44.  https://doi.org/10.5751/ES-05103-170444 CrossRefGoogle Scholar
  35. Lamine C (2011) Transition pathways towards a robust ecologization of agriculture and the need for system redesign. Cases from organic farming and IPM. J Rural Stud 27(2):209–219.  https://doi.org/10.1016/j.jrurstud.2011.02.001 CrossRefGoogle Scholar
  36. Lamine C, Bellon S (2009) Conversion to organic farming: a multidimensional research object at the crossroads of agricultural and social sciences. A review. Agron Sustain Dev 29(1):97–112.  https://doi.org/10.1051/agro/2008007 CrossRefGoogle Scholar
  37. Lefèvre V, Capitaine M, Peigné J, Roger-Estrade J (2014a) Farmers and agronomists design new biological agricultural practices for organic cropping systems in France. Agron Sustain Dev 34(3):623–632.  https://doi.org/10.1007/s13593-013-0177-2 CrossRefGoogle Scholar
  38. Magrini MB, Anton M, Cholez C, Corre-Hellou G, Duc G, Jeuffroy MH, Meynard JM, Pelzer E, Voisin AS, Walrand S (2016) Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecol Econ 126:152–162.  https://doi.org/10.1016/j.ecolecon.2016.03.024 CrossRefGoogle Scholar
  39. Mawois M, Aubry C, Navarrete M, Le Bail M (2012) Modelling spatial extension of vegetable land use in urban farms. Agron Sustain Dev 32(4):911–924.  https://doi.org/10.1007/s13593-012-0093-x CrossRefGoogle Scholar
  40. Mawois M, N’Guyen G, Casagrande M (2017) Freins et leviers à l’insertion des légumineuses : étude comparative de trois territoires contrastés (Bourgogne, Midi-Pyrénées, Pays de la Loire). Innovations agronomiques. Innov Agron 60:91–105Google Scholar
  41. Médiène S, Valantin-Morison M, Sarthou JP, de Tourdonnet S, Gosme M, Bertrand M, Roger-Estrade J, Aubertot JN, Rusch A, Motisi N, Pelosi C, Doré T (2011) Agroecosystem management and biotic interactions: a review. Agron Sustain Dev 31(3):491–514.  https://doi.org/10.1007/s13593-011-0009-1 CrossRefGoogle Scholar
  42. Meynard JM, Dedieu B, Bos AP (2012) Re-design and co-design of farming systems. An overview of methods and practices. In: Darnhofer I, Gibbon D, Dedieu B (eds) Farming systems research into the 21st century: the new dynamic. Springer Netherlands, Dordrecht, pp 405–429CrossRefGoogle Scholar
  43. Meynard JM., Messean A, Charlier M, Charrier F, Fares M, Le Bail M, Magrini MB (2013) Freins et leviers à la diversification des cultures : étude au niveau des exploitations agricoles et des filières. OCL 20(4). doi :  https://doi.org/10.1051/ocl/2013007
  44. Meynard JM, Jeuffroy MH, Le Bail M, Lefèvre A, Magrini MB, Michon C (2016) Designing coupled innovations for the sustainability transition of agrifood systems. Agric Syst 157:330–339.  https://doi.org/10.1016/j.agsy.2016.08.002 CrossRefGoogle Scholar
  45. Meynard JM, Charrier F, Le Bail M, Magrini MB, Charlier A, Messéan A (2018) Socio-technical lock-in hinders crop diversification in France. Agron Sustain Dev 38(5):54.  https://doi.org/10.1007/s13593-018-0535-1 CrossRefGoogle Scholar
  46. Moulin CH, Ingrand S, Lasseur J, Madelrieux S, Napoleone M, Pluvinage J, Thénard V (2008) Comprendre et analyser les changements d'organisation et de conduite de l'élevage dans un ensemble d'exploitations: propositions méthodologiques. In: Dedieu et al. (ed), L'élevage en mouvement. Flexibilité et adaptation des exploitations d'herbivores, Update Sciences and Technologies, Editions QuaeGoogle Scholar
  47. Navarrete M, Le Bail M (2007) SALADPLAN: a model of the decision-making process in lettuce and endive cropping. Agron Sustain Dev 27(3):209–221.  https://doi.org/10.1051/agro:2007009 CrossRefGoogle Scholar
  48. Nave S, Jacquet F, Jeuffroy MH (2013) Why wheat farmers could reduce chemical inputs: evidence from social, economic, and agronomic analysis. Agron Sustain Dev 33(4):795–807.  https://doi.org/10.1007/s13593-013-0144-y CrossRefGoogle Scholar
  49. Nemecek T, Von Richthofen JS, Dubois G, Casta P, Charles R, Pahl H (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28:380–393.  https://doi.org/10.1016/j.eja.2007.11.004 CrossRefGoogle Scholar
  50. Norton GW, Rajotte EG, Gapud V (1999) Participatory research in integrated pest-management: lessons from the IPM. Agric Hum Values 16:431–439.  https://doi.org/10.1023/A:1007608019218 CrossRefGoogle Scholar
  51. Petit C, Aubry C (2015) Typology of organic management styles in a cash-crop region using a multicriteria method. Org Agric 6:155.  https://doi.org/10.1007/s13165-015-0124-4 CrossRefGoogle Scholar
  52. Preissel S, Reckling M, Schläfke N, Zander P (2015) Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: a review. Field Crop Res 175:64–79.  https://doi.org/10.1016/j.fcr.2015.01.012 CrossRefGoogle Scholar
  53. Prost L, Berthet E, Cerf M, Jeuffroy MH, Labatut J, Meynard JM (2016) Innovative design for agriculture in the move towards sustainability: scientific challenges. Res Eng Des 28:119–129.  https://doi.org/10.1007/s00163-016-0233-4 CrossRefGoogle Scholar
  54. Reckling M, Hecker JM, Bergkvist G, Watson CA, Zander P, Schläfke N, Stoddard FL, Eory V, Topp F, Maire J, Bachinger J (2016) A cropping system assessment framework—evaluating effects of introducing legumes into crop rotations. Eur J Agron 76:186–197.  https://doi.org/10.1016/j.eja.2015.11.005 CrossRefGoogle Scholar
  55. Schneider F, Fry P, Lederman T, Rist S (2009) Social learning processes in Swiss soil protection—the ‘from farmer-to farmer’project. Hum Ecol 37(4):475–489.  https://doi.org/10.1007/s10745-009-9262-1 CrossRefGoogle Scholar
  56. Schneider A, Flénet F, Dumans P, Bonnin E, De Chezelles E, Jeuffroy MH, Hayer F, Nemecek T, Carrouée B (2010) Diversifier les rotations céréalières notamment avec du pois et du colza—Données récentes d’expérimentations et d’études. OCL 17:301–311.  https://doi.org/10.1051/ocl.2010.0332 CrossRefGoogle Scholar
  57. Schneider A, Huyghe C, Maleplate T, Labalette F, Peyronnet C, Carrouée B (2015) Rôle des légumineuses dans l’agriculture française. In Les légumineuses pour des systèmes agricoles et alimentaires durables. QuaeGoogle Scholar
  58. Schott C, Mignolet C, Meynard JM (2010) Les oléoprotéagineux dans les systèmes de culture : évolution des assolements et des successions culturales depuis les années 1970 dans le bassin de la Seine. OCL 17:1–16.  https://doi.org/10.1051/ocl.2010.0334 CrossRefGoogle Scholar
  59. Toffolini Q, Jeuffroy MH, Prost L (2016a) Indicators used by farmers to design agricultural systems: a survey. Agron Sustain Dev 36(1):1–14.  https://doi.org/10.1007/s13593-015-0340-z CrossRefGoogle Scholar
  60. Toffolini Q, Jeuffroy MH, Prost L (2016b). L’activité de re-conception d’un système de culture par l’agriculteur: implications pour la production de connaissances en agronomie. Agriculture, Environnement et Société, Association Française d’Agronomie 6(2)Google Scholar
  61. Tomich TP, Brodt S, Ferris H, Galt R, Horwath WR, Kebreab E, Leveau JHJ, Liptzin D, Lubell M, Merel P, Michelmore R, Rosenstock T, Scow K, Six J, Williams N, Yang L (2010) Agroecology: a review from a global-change. Annu Rev Environ Resour 36:193–222.  https://doi.org/10.1146/annurev-environ-012110-121302 CrossRefGoogle Scholar
  62. Vanloqueren G, Baret P (2009) How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Res Policy 38(6):971–983.  https://doi.org/10.1016/j.respol.2009.02.008 CrossRefGoogle Scholar
  63. Voisin AS, Guéguen J, Huyghe C, Jeuffroy MH, Magrini MB, Meynard JM, Pelzer E (2014) Legumes for feed, food, biomaterials and bioenergy in Europe: a review. Agron Sustain Dev 34:361–380.  https://doi.org/10.1007/s13593-013-0189-y CrossRefGoogle Scholar
  64. Warner KD (2007) Agroecology in action: extending alternative agriculture through social networks. The MIT Press, LondonGoogle Scholar
  65. Weiner J, Andersen SB, Wille WKM, Griepentrog HW, Olsen JM (2010) Evolutionary agroecology: the potential for cooperative, high density, weed-suppressing cereals. Evol Appl 3(5–6):473–479.  https://doi.org/10.1111/j.1752-4571.2010.00144.x CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zander P, Amjath-Babu T, Preissel S, Reckling M, Bues A, Schläfke N, Kuhlman T, Bachinger J, Uthes S, Stoddard F, Murphy-Bokern D, Watson C (2016) Grain legume decline and potential recovery in European agriculture: a review. Agron Sustain Dev 36(2):1–20.  https://doi.org/10.1007/s13593-016-0365-y CrossRefGoogle Scholar
  67. Zimmer S, Liebe U, Didier JP, Heß J (2016) Luxembourgish farmers’ lack of information about grain legume cultivation. Agron Sustain Dev 36(1):1–10.  https://doi.org/10.1007/s13593-015-0339-5 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.USC1432 LEVA, INRA, Ecole Supérieure d’AgriculturesUniv. Bretagne Loire, SFR 4207 QUASAVAngersFrance
  2. 2.ISARA Lyon, Département Agroécologie et EnvironnementUniversité de LyonLyonFrance
  3. 3.ITAB (Institut Technique de l’Agriculture Biologique)Saint Marcel les ValenceFrance
  4. 4.UMR Agronomie, INRA, AgroParisTechUniversité Paris-SaclayThiverval-GrignonFrance
  5. 5.UMR SAD-APT, INRA, AgroParisTechUniversité Paris-SaclayParisFrance

Personalised recommendations