Advertisement

Reduced crop damage by self-regulation of aphids in an ecologically enriched, insecticide-free apple orchard

Research Article

Abstract

Enhancing natural enemies for pest management in agriculture is an expanding approach offering new opportunities for pest control and the potential to reduce insecticide use. Numerous studies in a variety of cropping systems clearly have shown that adequate measures can benefit natural enemies. However, although carry-over effects from an increase in natural enemies and a subsequent decrease in pest populations leading to a reduction in crop damage are always assumed, they are rarely proven. We established an insecticide-free apple orchard optimized for the self-regulation of pests by supporting natural enemies with shelter, nectar, alternative prey/hosts, and pollen. For six growing seasons, we focused on the control of the major apple pest Dysaphis plantaginea. While fruit damage after the second fruit drop was not affected by aphidophagous insect guilds, it was negatively related to spider abundance in the previous autumn, when aphids immigrate back to the orchard to establish the next generation. In detail, we found that an increase in spider web area reduced the number of aphid fundatrices in spring and subsequently fruit damage. Our findings indicate the rarely proven carry-over effect of enhanced natural enemies on decreased crop damage and we show for the first time, how the rosy apple aphid can be managed without the use of insecticides.

Keywords

Dysaphis plantaginea Natural enemies Pest control Rosy apple aphid Spiders Sustainable fruit system Syrphidae 

Notes

Acknowledgments

We thank Franco Weibel, Lucius Tamm, Eric Wyss, Ignazio Giordano, Andreas Hammelehle, Francisco Suter, Hansjakob Schärer, Andi Häseli, Simon Schweizer, Susanne Tesch, Jasmin Arab, Silvia Matray, Mathias Ludwig, Pius Allemann, Afred Schädeli, Bronya Dehlinger, Christian Vogt, Chloë Raderschall and Heinz Leutwyler from FiBL, and Jörg Samietz, Esther Bravin, Heinrich Höhn, and Andres Beck from Agroscope for their assistance in the project.

Funding

We thank the Bundesamt für Landwirtschaft, Pan-Civis Stiftung, Hans-Eggenberger-Stiftung, Paul Schiller-Stiftung, and Stiftung Dreiklang für ökologische Forschung und Bildung for the funding of the project.

References

  1. Athey KJ, Dreyer J, Kowles KA, Penn HJ, Sitvarin MI, Harwood JD (2016) Spring forward: molecular detection of early season predation in agroecosystems. Food Webs 9:25–31.  https://doi.org/10.1016/j.fooweb.2016.06.001 CrossRefGoogle Scholar
  2. Balzan MV, Bocci G, Moonen AC (2016) Utilisation of plant functional diversity in wildflower strips for the delivery of multiple agroecosystem services. Entomol Exp Appl 158(3):304–319.  https://doi.org/10.1111/eea.12403 CrossRefGoogle Scholar
  3. Bostanian NJ, Goulet H, O'Hara J, Masner L, Racette G (2004) Towards insecticide free apple orchards: flowering plants to attract beneficial arthropods. Biocontrol Sci Tech 14(1):25–37.  https://doi.org/10.1080/09583150310001606570 CrossRefGoogle Scholar
  4. Bourguet D, Guillemaud T (2016) The hidden and external costs of pesticide use. Sustain Agric Rev 19:35–120.  https://doi.org/10.1007/978-3-319-26777-7_2 CrossRefGoogle Scholar
  5. Cross JV, Cubison S, Harris A, Harrington R (2007) Autumn control of rosy apple aphid, Dysaphis plantaginea (Passerini), with aphicides. Crop Prot 26(8):1140–1149.  https://doi.org/10.1016/j.cropro.2006.10.007 CrossRefGoogle Scholar
  6. den Belder E, Elderson J, van den Brink WJ, Schelling G (2002) Effect of woodlots on thrips density in leek fields: a landscape analysis. Agric Ecosyst Environ 91(1–3):139–145.  https://doi.org/10.1016/s0167-8809(01)00264-x CrossRefGoogle Scholar
  7. Dib H, Simon S, Sauphanor B, Capowiez Y (2010) The role of natural enemies on the population dynamics of the rosy apple aphid, Dysaphis plantaginea Passerini (Hemiptera: Aphididae) in organic apple orchards in south-eastern France. Biol Control 55(2):97–109.  https://doi.org/10.1016/j.biocontrol.2010.07.005 CrossRefGoogle Scholar
  8. Dib H, Jamont M, Sauphanor B, Capowiez Y (2011) Predation potency and intraguild interactions between generalist (Forficula auricularia) and specialist (Episyrphus balteatus) predators of the rosy apple aphid (Dysaphis plantaginea). Biol Control 59(2):90–97.  https://doi.org/10.1016/j.biocontrol.2011.07.012 CrossRefGoogle Scholar
  9. Hemptinne J-L, Dixon AFG, Wyss E (2003) Biological control of the rosy apple aphid, Dysaphis plantaginea (Passerini) (Homoptera: Aphididae): learning from the ecology of the ladybird beetles. In: Soares AO, Ventura MA, Garcia V, Hemptinne J-L (eds) Proceedings of the 8th International Symposium on Ecology of Aphidophaga: Biology, Ecology and Behaviour of Aphidophagous Insects. Arquipélago, Life and Marine Sciences, Supplement: 33-41Google Scholar
  10. Hindayana D, Meyhofer R, Scholz D, Poehling HM (2001) Intraguild predation among the hoverfly Episyrphus balteatus de Geer (Diptera : Syrphidae) and other aphidophagous predators. Biol Control 20(3):236–246.  https://doi.org/10.1006/bcon.2000.0895 CrossRefGoogle Scholar
  11. Kajak A (1978) Analysis of consumption by spiders under laboratory and field conditions. Ekologia Polska 26:409–427Google Scholar
  12. Korner-Nievergelt F, Roth T, von Felten S, Guélat J, Almasi B, Korner-Nievergelt P (2015) Bayesian data analsis in ecology using linear models with R, BUGS, and Stan. Academic Press Elsevier, p 125Google Scholar
  13. Lampel G (1968) Biologie des Blattlaus-Generationswechsels. VEB Gustav Fischer, Verlag, JenaGoogle Scholar
  14. Letourneau DK, Bothwell SG (2008) Comparison of organic and conventional farms: challenging ecologists to make biodiversity functional. Front Ecol Environ 6(8):430–438.  https://doi.org/10.1890/070081 CrossRefGoogle Scholar
  15. Marko V, Keresztes B (2014) Flowers for better pest control? Ground cover plants enhance apple orchard spiders (Araneae), but not necessarily their impact on pests. Biocontrol Sci Tech 24(5):574–596.  https://doi.org/10.1080/09583157.2014.881981 CrossRefGoogle Scholar
  16. Marliac G, Mazzia C, Pasquet A, Cornic JF, Hedde M, Capowiez Y (2016) Management diversity within organic production influences epigeal spider communities in apple orchards. Agric Ecosyst Environ 216:73–81.  https://doi.org/10.1016/j.agee.2015.09.026 CrossRefGoogle Scholar
  17. Minarro M, Hemptinne JL, Dapena E (2005) Colonization of apple orchards by predators of Dysaphis plantaginea: sequential arrival, response to prey abundance and consequences for biological control. BioControl 50(3):403–414.  https://doi.org/10.1007/s10526-004-5527-1 CrossRefGoogle Scholar
  18. Nentwig W (1987) The ecophysiology of spiders. Springer, BerlinCrossRefGoogle Scholar
  19. Nilsson U, Porcel M, Świergiel W, Wivstad M (2016) Habitat manipulation – as a pest management tool in vegetable and fruit cropping systems, with the focus on insects and mites. SLU, EPOK – Centre for Organic Food & Farming. 07:12, http://orgprints.org/30032/
  20. Pfiffner L, Wyss E (2004) Use of sown wildflower strips to enhance natural enemies of agricultural pests. In: Gurr GM, Wratten SD, Altieri MA (Hrsg.) Ecological engineering for pest management. CABI-Publishing, Collingwood, Australia, Kapitel 11, S. 167-188Google Scholar
  21. Riechert SE, Lockley T (1984) Spiders as biological control agents. Annu Rev Entomol 29(1):299–320.  https://doi.org/10.1146/annurev.en.29.010184.001503 CrossRefGoogle Scholar
  22. Sackett TE, Buddle CM, Vincentb C (2009) Dynamics of spider colonization of apple orchards from adjacent deciduous forest. Agric Ecosyst Environ 129(1–3):144–148.  https://doi.org/10.1016/j.agee.2008.08.005 CrossRefGoogle Scholar
  23. Schmid A, Weibel FP (2000) Das Sandwich-System –ein Verfahren zur herbizidfreien Baumstreifenbe- wirtschaftung? [The Sandwich System, a procedure for herbicide free in-row weed control?]. Obstbau 25:214–217Google Scholar
  24. Simon S, Bouvier JC, Debras JF, Sauphanor B (2010) Biodiversity and pest management in orchard systems. Rev Agronomy Sustain Dev 30(1):139–152.  https://doi.org/10.1051/agro/2009013 CrossRefGoogle Scholar
  25. Snyder WE, Chang GC, Prasad RP (2005) Conservation biological control: biodiversity influences the effectiveness of predators. In: Barbosa P, Castellanos I (eds) Ecology of predator-prey interactions. Oxford University Press, New YorkGoogle Scholar
  26. Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285(5429):893–895.  https://doi.org/10.1126/science.285.5429.893 CrossRefPubMedGoogle Scholar
  27. Tschumi M, Albrecht M, Entling MH, Jacot K (2015) High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc Royal Soc B-Biol Sci 282(1814):189–196.  https://doi.org/10.1098/rspb.2015.1369 CrossRefGoogle Scholar
  28. Tschumi M, Albrecht M, Baertschi C, Collatz J, Entling MH, Jacot K (2016) Perennial, species-rich wildflower strips enhance pest control and crop yield. Agric Ecosyst Environ 220:97–103.  https://doi.org/10.1016/j.agee.2016.01.001 CrossRefGoogle Scholar
  29. Van Lenteren J (2006) Ecosystem services to biological control of pests: why are they ignored? Proc Netherlands Entomol Soc Meet 17:103–111Google Scholar
  30. Whalon ME, Croft BA (1984) Apple IPM implementation in North America. Annu Rev Entomol 29(1):435–470.  https://doi.org/10.1146/annurev.en.29.010184.002251 CrossRefGoogle Scholar
  31. Wyss E, Niggli U, Nentwig W (1995) The impact of spiders on aphid populations in a strip-managed apple orchard. J Appl Entomol 119(1-5):473–478.  https://doi.org/10.1111/j.1439-0418.1995.tb01320.x CrossRefGoogle Scholar
  32. Wyss E, Villiger M, Muller-Scharer H (1999) The potential of three native insect predators to control the rosy apple aphid, Dysaphis plantaginea. BioControl 44(2):171–182.  https://doi.org/10.1023/a:1009934214927 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2017

Authors and Affiliations

  • Fabian Cahenzli
    • 1
  • Lukas Pfiffner
    • 1
  • Claudia Daniel
    • 1
  1. 1.Research Institute of Organic AgricultureFrickSwitzerland

Personalised recommendations