Crop rotations and crop residues are relevant parameters for agricultural carbon footprints

  • Gerhard Brankatschk
  • Matthias Finkbeiner
Research Article


Agriculture is the key for achieving the United Nations sustainable development goals: food security and climate action. To achieve these targets “climate-smart” agricultural practices need to be developed. Life cycle assessment and product carbon footprints are well established and internationally recognized tools to assist the process of improving environmental performance. However, there is room for methodological improvement of agricultural life cycle assessments and product carbon footprints. For agronomists, it is widely known that crop rotations and crop residues do fulfill important agronomic functions, but they are not adequately represented in current life cycle assessment and product carbon footprint modeling practice. New methods tested in this study allow the inclusion of crop rotation effects and crop residues as co-products, whilst keeping at the same time the product focus. Product carbon footprints are calculated with and without consideration of these effects; results are compared. If crop rotations are considered, wheat bread, cow milk, and rapeseed biodiesel have lower product carbon footprints (− 11, − 22, and − 16%, respectively). The product carbon footprint of straw bioethanol significantly increases (+ 80%) when considering straw as an agricultural co-product instead of as waste. Ignoring crop rotation effects underestimates the annual greenhouse gas savings of EU-28 rapeseed biodiesel by 1.67 million t CO2e and 20%, respectively. Here, we demonstrate for the first time that crop rotations and straw harvest should be considered for the product carbon footprints of bread, milk, and first- and second-generation biofuels. Since crop rotations and straw harvest are performed worldwide, the findings are relevant to all regions in the world. Comparing crop rotations and identifying climate-smart agricultural practices without losing the production orientation are key challenges for environmental assessments of agriculture in order to achieve the challenging combination of the food security and climate action sustainable development goals.


Life cycle assessment Product carbon footprint Greenhouse gas Climate-smart agriculture Crop rotation Crop residues Allocation Cereal unit 


  1. Albrecht R, Guddat C (2004) Welchen Wert haben Körnerleguminosen in der Fruchtfolge (What is the value of grain legumes in crop rotations). InGoogle Scholar
  2. Alföldi T, Schmid O, Gaillard G, Dubois D (1999) Life cycle assessment of integrated and organic crop production. Agrarforschung 6(9):337–340Google Scholar
  3. Audsley E, Alber S, Gemeinschaften E (1997) Harmonisation of environmental life cycle assessment for agriculture. European Comm., DG VI AgricultureGoogle Scholar
  4. Berthoud A, Buet AL, Genter T, Marquis S (2012) Comparison of the environmental impact of three forms of nitrogen fertilizer. Retrieved from Paris:
  5. Bessou C, Ferchaud F, Gabrielle B, Mary B (2011) Biofuels, greenhouse gases and climate change. A review. Agron Sustain Dev 31(1):1. CrossRefGoogle Scholar
  6. BioGrace (2015) BioGrace Excel tool—version 4d—harmonised calculations of biofuel greenhouse gas emissions in Europe. Retrieved 14 June 2015, from Align biofuel GHG emission calculations in Europe (BioGrace).;;
  7. BMEL, & BLE (2015) Besondere Ernte- und Qualitätsermittlung BEE 2014 (Special harvesting and quality determination BEE 2014). Retrieved from Berlin:
  8. Brankatschk G, Finkbeiner M (2014) Application of the cereal unit in a new allocation procedure for agricultural life cycle assessments. J Clean Prod 73:72–79. CrossRefGoogle Scholar
  9. Brankatschk G, Finkbeiner M (2015) Modeling crop rotation in agricultural LCAs—challenges and potential solutions. Agric Syst 138:66–76. CrossRefGoogle Scholar
  10. Braschkat J, Patyk A, Quirin M, Reinhardt G (2004) Life cycle assessment of bread production—a comparison of eight different scenarios. Paper presented at the life cycle assessment in the agri-food sector. Proceedings from the 4th international conference, Bygholm (DK), 6–8 October 2003, Bygholm, DenmarkGoogle Scholar
  11. Cowell S, Clift R (1995) Life cycle assessment for food production systems. In: Fertiliser SocietyGoogle Scholar
  12. Curran MA (2007) Studying the effect on system preference by varying coproduct allocation in creating life-cycle inventory. Environ Sci Technol 41(20):7145–7151. CrossRefPubMedGoogle Scholar
  13. DIRECTIVE 2009/28/EC on the promotion of the use of energy from renewable sources (RED) (2009)Google Scholar
  14. Dury J, Schaller N, Garcia F, Reynaud A, Bergez JE (2012) Models to support cropping plan and crop rotation decisions. A review. Agron Sustain Dev 32(2):567–580. CrossRefGoogle Scholar
  15. Eurostat (2015) Crops products—annual data. Retrieved 14 June 2015, from European Commission;
  16. Eurostat, & European Union (2007) The use of plant protection products in the European Union: data 1992-2003. EUR-OP, LuxembourgGoogle Scholar
  17. FAO (2010) Climate-smart” agriculture—policies, practices and financing for food security, adaptation and mitigation. Retrieved from Rome:
  18. FAO (2013) Climate-smart agriculture—sourcebook. Retrieved from Rome:
  19. FAO (2015a) Breakthrough climate agreement recognizes food security as a priority [press release]. Retrieved from
  20. FAO (2015b) FAO statistics division—arable land world. FAOSTAT Retrieved 5 September 2015, from FAO Food and Agriculture Organization of the United Nations;
  21. (2015) Börse und Finanzen. Retrieved from
  22. Finkbeiner M, Schau EM, Lehmann A, Traverso M (2010) Towards life cycle sustainability assessment. Sustainability 2(10):3309. CrossRefGoogle Scholar
  23. Finkbeiner M, Ackermann R, Bach V, Berger M, Brankatschk G, Chang Y-J et al (2014) Challenges in life cycle assessment: an overview of current gaps and research needs. In: Klöpffer W (ed) Background and future prospects in life cycle assessment. Springer, Dordrecht, pp 207–258CrossRefGoogle Scholar
  24. Flisch R, Sinaj S, Charles R, Richner W (2009) GRUDAF 2009. Principles for fertilisation in arable and fodder production. Agrarforschung 16(2):1–100Google Scholar
  25. Gabrielle B, Gagnaire N (2008) Life-cycle assessment of straw use in bio-ethanol production: a case study based on biophysical modelling. Biomass Bioenergy 32(5):431–441. CrossRefGoogle Scholar
  26. Goglio P, Brankatschk G, Knudsen MT, Williams AG, Nemecek T (2017) Addressing crop interactions within cropping systems in LCA. Int J Life Cycle Assess.
  27. Guinée JB, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R et al (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45(1):90–96. CrossRefPubMedGoogle Scholar
  28. (2015) Nachrichten für die Landwirtschaft | Retrieved from Retrieved from Retrieved from Retrieved from
  29. ISO 14044 (2006) ISO 14044. Environmental management—life cycle assessment—requirements and guidelines. In. Geneva: International Organization for Standardization (ISO)Google Scholar
  30. Kaltschmitt M, Hartmann H, Hrsg HH (2009) Energie aus Biomasse: Grundlagen, Techniken und Verfahren [Energy from biomass: fundamentals, techniques and procedures], 2nd edn. Springer, DordrechtGoogle Scholar
  31. Kim S, Dale BE (2002) Allocation procedure in ethanol production system from corn grain—I. System expansion. Int J Life Cycle Assess 7(4):237–243. CrossRefGoogle Scholar
  32. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375. CrossRefGoogle Scholar
  33. KTBL (2015) Verfahrensrechner Pflanze (calculator for crop production processes). Available from KTBL KTBL Verfahrensrechner Pflanze Retrieved 15. Februar 2015, from KTBL Kuratorium für Technik und Bauwesen in der Landwirtschaft e. V. (Association for Technology and Structures in Agriculture);
  34. Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31(4):575–584. CrossRefPubMedGoogle Scholar
  35. Lal R (2009) Soil quality impacts of residue removal for bioethanol production. Soil Tillage Res 102(2):233–241. CrossRefGoogle Scholar
  36. LfL (2013) Basisdaten fuer die Ermittlung des Duengebedarfs, fuer die Umsetzung der Duengeverordung,zur Berechnung des KULAP-Naaehrstoff-Saldos, zur Berechnung der Nährstoffbilanz nach Hoftor-Ansatz (Basic data: for the determination of nutrient demand, for the implementation of fertilizer ordinance, to calculate the KULAP-nutrient-balance, to calculate the nutrient balance using farm-gate approach). In (pp. 25): LfL Bayerische Landesanstalt für Lanwirtschaft (The Bavarian State Research Center for Agriculture)Google Scholar
  37. Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M et al (2014) Climate-smart agriculture for food security. Nat Clim Chang 4(12):1068–1072. CrossRefGoogle Scholar
  38. Liu C, Cutforth H, Chai Q, Gan Y (2016) Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agron Sustain Dev 36(4):69. CrossRefGoogle Scholar
  39. Łukowiak R, Grzebisz W, Sassenrath GF (2016) New insights into phosphorus management in agriculture—a crop rotation approach. Sci Total Environ 542(Part B):1062–1077. PubMedGoogle Scholar
  40. Lundie S, Ciroth A, Huppes G (2007) Inventory methods in LCA: towards consistency and improvement—final report. Retrieved from
  41. Mönking SS, Klapp C, Abel H, Theuvsen L (2010) Überarbeitung des Getreide- und Vieheinheitenschlüssels—Endbericht zum BMELV-Forschungsprojekt 06HS030 [Revision of cereal unit and livestock unit—Final report on research project 06HS030 BMELV] (06HS030). Retrieved from Göttingen:
  42. Müller-Lindenlauf M, Cornelius C, Gärtner S, Reinhardt G, Rettenmaier N, Schmidt T (2014) Umweltbilanz von Milch- und Milcherzeugnissen—Status quo und Ableitung von Optimierungspotenzialen. Retrieved from Heidelberg:
  43. Nemecek T, Huguenin-Elie O, Dubois D, Gaillard G, Schaller B, Chervet A (2011) Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agric Syst 104(3):233–245. CrossRefGoogle Scholar
  44. Pelletier N (2015) Life cycle thinking, measurement and management for food system sustainability. Environ Sci Technol 49(13):7515–7519. CrossRefPubMedGoogle Scholar
  45. Schenck R, Huizenga D (2014, 8-10 October 2014). Proceedings of the 9th international conference on life cycle assessment in the Agri-Food Sector (LCA Food 2014). Paper presented at the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014), San FranciscoGoogle Scholar
  46. Spiertz JHJ (2010) Nitrogen, sustainable agriculture and food security. A review. Agron Sustain Dev 30(1):43–55. CrossRefGoogle Scholar
  47. TLL, Guddat C, Degner J, Zorn W, Götz R, Paul R, Baumgärtel T (2010) Leitlinie zur effizienten und umweltverträglichen Erzeugung von Ackerbohnen und Körnererbsen (Guideline for efficient and environment-friendly production of field beans and peas). Jena: TLL Thüringer Landesanstalt für Landwirtschaft (The Thuringian State Research Centre for Agriculture). Retrieved from
  48. United Nations (2015) World population prospects: the 2015 revision. Retrieved from
  49. van der Werf HMG, Corson M, Wilfart A (2013) LCA food 2012—towards sustainable food systems. Int J Life Cycle Assess:1–4.
  50. von Carlowitz HC (1713) Sylvicultura oeconomica. Johann Friedrich Braun, LeipzigGoogle Scholar
  51. von Richthofen, J-S, Pahl H, Nemecek T, Odermatt S, Charles R, Casta P, …, Lucassen J (2006) Economic interest of grain legumes in European crop rotations. Retrieved fromGoogle Scholar
  52. Wezel A, Soboksa G, McClelland S, Delespesse F, Boissau A (2015) The blurred boundaries of ecological, sustainable, and agroecological intensification: a review. Agron Sustain Dev, 35(4).
  53. Wrightson J (1921) Agriculture theoretical and practical. Lockwood, LondonGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS 2017

Authors and Affiliations

  1. 1.Department of Environmental TechnologyTechnische Universität BerlinBerlinGermany

Personalised recommendations