Semi-natural habitats support biological control, pollination and soil conservation in Europe. A review

  • John M. Holland
  • Jacob C. Douma
  • Liam Crowley
  • Laura James
  • Laura Kor
  • David R.W. Stevenson
  • Barbara M. Smith
Review Article


Semi-natural habitats are integral to most agricultural areas and have the potential to support ecosystem services, especially biological control and pollination by supplying resources for the invertebrates providing these services and for soil conservation by preventing erosion and run-off. Some habitats are supported through agri-environment scheme funding in the European Union, but their value for ecosystem service delivery has been questioned. An improved understanding of previous research approaches and outcomes will contribute to the development of more sustainable farming systems, improve experimental designs and highlight knowledge gaps especially for funders and researchers. Here we compiled a systematic map to allow for the first time a review of the quantity of evidence collected in Europe that semi-natural habitats support biological control, pollination and soil conservation. A literature search selected 2252 publications, and, following review, 270 met the inclusion criteria and were entered into the database. Most publications were of pest control (143 publications) with less on pollination (78 publications) or soil-related aspects (31). For pest control and pollination, most publications reported a positive effect of semi-natural habitats. There were weaknesses in the evidence base though because of bias in study location and the crops, whilst metrics (e.g. yield) valued by end users were seldom measured. Hedgerows, woodland and grassland were the most heavily investigated semi-natural habitats, and the wider landscape composition was often considered. Study designs varied considerably yet only 24% included controls or involved manipulation of semi-natural habitats. Service providers were commonly measured and used as a surrogate for ecosystem service delivery. Key messages for policymakers and funders are that they should encourage research that includes more metrics required by end users, be prepared to fund longer-term studies (61% were of only 1-year duration) and investigate the role of soils within semi-natural habitats in delivering ecosystem services.


Agroecology Ecosystem services Agricultural policy Pollinators Sustainable agriculture Integrated pest management Experimental design Agricultural research 


  1. Bianchi FJJA, van der Werf W (2003) The effect of the area and configuration of hibernation sites on the control of aphids by Coccinella septempunctata (Coleoptera : Coccinellidae) in agricultural landscapes: a simulation study. Environ Entomol 32:1290–1304. doi:10.1603/0046-225X-32.6.1290 CrossRefGoogle Scholar
  2. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc Biol Sci Ser B 273:1715–1727. doi:10.1098/rspb.2006.3530 CrossRefGoogle Scholar
  3. Bommarco R, Marini L, Vaissiere BE (2012) Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia (Berl) 169:1025–1032. doi:10.1007/s00442-012-2271-6 CrossRefGoogle Scholar
  4. Chaplin-Kramer R, O'Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932. doi:10.1111/j.1461-0248.2011.01642 PubMedCrossRefGoogle Scholar
  5. Duru M, Therond O, Martin G, Martin-Clouaire R, Magne M-A, Justes E, Journet E-P, Aubertot J-N, Savary S, Bergez J-E, Sarthou JP (2015) How to implement biodiversity-based agriculture to enhance ecosystem services: a review. Agron Sustain Dev 35:1259–1281. doi:10.1007/s13593-015-0306-1 CrossRefGoogle Scholar
  6. Ekroos J, Olsson O, Rundlöf M, Wätzold F, Smith HG (2014) Optimizing agri-environment schemes for biodiversity, ecosystem services or both? Biol Conserv 172:65–71. doi:10.1016/j.biocon.2014.02.013 CrossRefGoogle Scholar
  7. García-Feced C, Weissteiner CJ, Baraldi A, Paracchini ML, Maes J, Zulian G, Kempen M, Elbersen B, Pérez-Soba M (2015) Semi-natural vegetation in agricultural land: European map and links to ecosystem service supply. Agron Sustain Dev 35:273–283. doi:10.1007/s13593-014-0238-1 CrossRefGoogle Scholar
  8. Grant MJ, Booth A (2009) A typology of reviews: an analysis of 14 review types and associated methodologies. Health Inf Libr J 26:91–108. doi:10.1111/j.1471-1842.2009.00848 CrossRefGoogle Scholar
  9. Holland JM, Perry JN, Winder L (1999) The within-field spatial and temporal distribution of arthropods in winter wheat. Bull Entomol Res 89:499–513. doi:10.1017/S0007485399000656 CrossRefGoogle Scholar
  10. Holland J, Begbie M, Birkett T, Southway S, Thoms S, Alexander C, Thomas C (2004) The spatial dynamics and movement of Pterostichus melanarius and P. madidus (Carabidae) between and within arable fields in the UK. Int J Ecol Environ Sci 30:35–50Google Scholar
  11. Holland JM, Thomas C, Birkett T, Southway S, Oaten H (2005) Farm-scale spatiotemporal dynamics of predatory beetles in arable crops. J Appl Ecol 42:1140–1152. doi:10.1111/j.1365-2664.2005.01083 CrossRefGoogle Scholar
  12. Holland JM, Jeanneret P, Herzog F, Moonen A-C, Rossing W, van der Werf W, Kiss J, van Helden M, Paracchini ML, Cresswell J, Pointereau P, Heijne B, Veromann E, Antichi D, Entling M, Balázs B (2014) The QuESSA project: quantification of ecological services for sustainable agriculture. Landscape Management for Functional Biodiversity International Organisation for Biological Control/West Palaearctic Regional Section Bulletin 100:55–58Google Scholar
  13. Holland JM, Bianchi FJJA, Entling MH, Moonen AC, Smith BM, Jeanneret P (2016) Structure, function and management of semi-natural habitats for conservation biological control: a review of European studies. Pest Manag Sci 72:1638–1651. doi:10.1002/ps.4318 PubMedCrossRefGoogle Scholar
  14. James KL, Randall NP, Haddaway NR (2016) A methodology for systematic mapping in environmental sciences. Environ Evidence 5. doi:10.1186/s13750-016-0059-6
  15. Keenleyside C, Allen B, Hart K, Menaude H, Stefanova V, Prazan J, Herzon I, Clement T, Povellato A, Maciejczak M, Boatman N (2011) Delivering environmental benefits through entry level agri-environment schemes in the EU. Report prepared for DG Environment, Project ENV.B.1/ETU/2010/0035. Institute for European Environmental Policy, LondonGoogle Scholar
  16. Kleijn D, Baquero RA, Clough Y, Diaz M, De Esteban J, Fernandez F, Gabriel D, Herzog F, Holzschuh A, Johl R, Knop E, Kruess A, Marshall EJP, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–254. doi:10.1111/j.1461-0248.2005.00869 PubMedCrossRefGoogle Scholar
  17. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Ann Rev Entomol 45:175-201. doi:10.1146/annurev.ento.45.1.175
  18. Lavorel S, Grigulis K, Lamarque P, Colace M-P, Garden D, Girel J, Pellet G, Douzet R (2011) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J Ecol 99:135–147. doi:10.1111/j.1365-2745.2010.01753 CrossRefGoogle Scholar
  19. Liss KN, Mitchell MGE, MacDonald GK, Mahajan SL, Méthot J, Jacob AL, Maguire DY, Metson GS, Ziter C, Dancose K, Martins K, Terrado M, Bennett EM (2013) Variability in ecosystem service measurement: a pollination service case study. Front Ecol Environ 11:414–422. doi:10.1890/120189 CrossRefGoogle Scholar
  20. Lowrance R, Dabney S, Schultz R (2002) Improving water and soil quality with conservation buffers. J Soil Water Conserv 57:36A–43AGoogle Scholar
  21. Muirhead-Thomson RC (1991) Flight traps and interceptor traps. In: Muirhead-Thomson RC (ed) Trap responses of flying insects: the influence of trap design on capture efficiency. Academic Press, London, pp 152–179CrossRefGoogle Scholar
  22. Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614. doi:10.1111/j.1461-0248.2006.00911 PubMedCrossRefGoogle Scholar
  23. Rodriguez E, Fernandez-Anero FJ, Ruiz P, Campos M (2006) Soil arthropod abundance under conventional and no tillage in a Mediterranean climate. Soil Tillage Res 85:229–233. doi:10.1016/j.still.2004.12.010 CrossRefGoogle Scholar
  24. Rusch A, Birkhofer K, Bommarco R, Smith HG, Ekbom B (2014) Management intensity at field and landscape levels affects the structure of generalist predator communities. Oecologia 175:971–983. doi:10.1007/s00442-014-2949 PubMedCrossRefGoogle Scholar
  25. Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, Thies C, Tscharntke T, Weisser WW, Winqvist C, Woltz M, Bommarco R (2016) Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric Ecosyst Environ 221:198–204. doi:10.1007/s10980-016-0390 CrossRefGoogle Scholar
  26. Shackelford G, Steward PR, Benton TG, Kunin WE, Potts SG, Biesmeijer JC, Sait SM (2013) Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Biol Rev 88:1002–1021. doi:10.1111/brv.12040 PubMedCrossRefGoogle Scholar
  27. Tahir N, Brooker G (2011) Recent developments and recommendations for improving harmonic radar tracking systems. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 11–15 April 2011, pp 1531–1535Google Scholar
  28. Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285:893–895. doi:10.1126/science.285.5429.893 PubMedCrossRefGoogle Scholar
  29. Tillman PG, Prasifka JR, Heinz KM (2007) Rubidium marking to detect dispersal of pest and predator from corn into sorghum and cotton in Georgia. J Entomol Sci 42:383–391Google Scholar
  30. Tscharntke T, Rand TA, Bianchi FJJA (2005) The landscape context of trophic interactions: insect spillover across the crop-noncrop interface. Ann Zool Fenn 42:421–432Google Scholar
  31. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309. doi:10.1016/j.biocontrol.2007.08.006 CrossRefGoogle Scholar
  32. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Peter B, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fruend J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biol Rev (Camb) 87:661–685. doi:10.1111/j.1469-185X.2011.00216 CrossRefGoogle Scholar
  33. Viana BF, Boscolo D, Neto E, Lopes L, Lopes A, Ferreira PA, Pigozzo C, Primo L (2012) How well do we understand landscape effects on pollinators and pollination services? J Pollinat Ecol 7:31–42Google Scholar
  34. Vihervaara P, Rönkä M, Walls M (2010) Trends in ecosystem service research: early steps and current drivers. Ambio 39:314–324. doi:10.1007/s13280-010-0048 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Walter C, Merot P, Layer B, Dutin G (2003) The effect of hedgerows on soil organic carbon storage in hillslopes. Soil Use Manage 19:201–207. doi:10.1079/sum2002190 CrossRefGoogle Scholar
  36. Winder L, Holland JM, Perry JN, Woolley C, Alexander CJ (2001) The use of barrier-connected pitfall trapping for sampling predatory beetles and spiders. Entomol Exp Appl 98:249–258. doi:10.1046/j.1570-7458.2001.00781 CrossRefGoogle Scholar
  37. Winder L, Alexander CJ, Holland JM, Symondson WO, Perry JN, Woolley C (2005) Predatory activity and spatial pattern: the response of generalist carabids to their aphid prey. J Anim Ecol 74:443–454. doi:10.1111/j.1365-2656.2005.00939 CrossRefGoogle Scholar
  38. Wratten SD, Gillespie M, Decourtye A, Mader E, Desneux N (2012) Pollinator habitat enhancement: benefits to other ecosystem services. Agric Ecosyst Environ 159:112–122. doi:10.1016/j.agee.2012.06.020 CrossRefGoogle Scholar
  39. van Zanten BT, Verburg PH, Espinosa M, Gomez-y-Paloma S, Galimberti G, Kantelhardt J, Kapfer M, Lefebvre M, Manrique R, Piorr A, Raggi M, Schaller L, Targetti S, Zasada I, Viaggi D (2014) European agricultural landscapes, common agricultural policy and ecosystem services: a review. Agron Sustain Dev 34:309–325. doi:10.1007/s13593-013-0183-4 CrossRefGoogle Scholar

References of the systematic map

  1. Aguilar-Fenollosa E, Ibáñez-Gual MV, Pascual-Ruiz S, Hurtado M, Jacas JA (2011a) Effect of ground-cover management on spider mites and their phytoseiid natural enemies in clementine mandarin orchards (I): bottom-up regulation. Biol Control 59:158–170CrossRefGoogle Scholar
  2. Aguilar-Fenollosa E, Ibáñez-Gual MV, Pascual-Ruiz S, Hurtado M, Jacas JA (2011b) Effect of ground-cover management on spider mites and their phytoseiid natural enemies in clementine mandarin orchards (II): top-down regulation. Biol Control 2011(59):171–179CrossRefGoogle Scholar
  3. Aguilar-Fenollosa E, Pascual-Ruiz S, Hurtado MA, Jacas JA (2011c) Efficacy and economics of ground cover management as a conservation biological control strategy against Tetranychus urticae in clementine mandarin orchards. Crop Prot 30:1328–1333CrossRefGoogle Scholar
  4. Ailincăi C, Jităreanu G, Bucur D, Ailincăi D, Mercuş AD (2011) Evolution of some chemical properties of soil under influence of soil erosion and different cropping systems. Cercetari Agronomice in Moldova XLIV, No. 4(148):5–18Google Scholar
  5. Al Hassan D, Georgelin E, Delattre T, Burel F, Plantegenest M, Kindlmann P, Butet A (2013) Does the presence of grassy strips and landscape grain affect the spatial distribution of aphids and their carabid predators? Agric For Entomol 15:24–33CrossRefGoogle Scholar
  6. Alanen EL, Hyvönen T, Lindgren S, Härmä O, Kuussaari M (2011) Differential responses of bumblebees and diurnal Lepidoptera to vegetation succession in long-term set-aside. J Appl Ecol 48:1251–1259CrossRefGoogle Scholar
  7. Albrecht M, Duelli P, Müller C, Kleijn D, Schmid B (2007a) The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. J Appl Ecol 44:813–822CrossRefGoogle Scholar
  8. Albrecht M, Duelli P, Schmid B, Müller CB (2007b) Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. J Anim Ecol 76:1015–1025PubMedCrossRefGoogle Scholar
  9. Alcántara C, Pujadas A, Saavedra M (2011) Management of cruciferous cover crops by mowing for soil and water conservation in southern Spain. Agric Water Manag 98:1071–1080CrossRefGoogle Scholar
  10. Alebeek F, Kamstra J-H, Kruistum G, Visser A (2006) Improving natural pest suppression in arable farming: field margins and the importance of ground dwelling predators. Landscape Management For Functional Biodiversity, IOBC wprs Bulletin 29:137Google Scholar
  11. Alhmedi A, Haubruge E, Francis F (2011a) Effect of stinging nettle habitats on aphidophagous predators and Hymenoptera in wheat and green pea fields with special attention to the invader Harmonia. Entomological Science 12:349–358CrossRefGoogle Scholar
  12. Alhmedi A, Haubruge E, D’Hoedt S, Francis F (2011b) Quantitative food webs of herbivore and related beneficial community in non-crop and crop habitats. Biol Control 58:103–112CrossRefGoogle Scholar
  13. Alomar Ò, Goula M, Albajes R (2002) Colonisation of tomato fields by predatory mirid bugs (Hemiptera: Heteroptera) in Northern Spain. Agric Ecosyst Environ 89:105–115CrossRefGoogle Scholar
  14. Ameixa OLGA, Kindlmann PAVEL (2008) Agricultural policy-induced landscape changes: effects on carabid abundance and their biocontrol potential. European Journal of Entomology 105:467–476CrossRefGoogle Scholar
  15. Andersen A (1997) Densities of overwintering Coleoptera and staphylinids (Col., Carabidae and Staphylinidae) in cereal and grass fields and their boundaries. J Appl Entomol 121:77–80CrossRefGoogle Scholar
  16. Anderson A, Carnus T, Helden AJ, Sheridan H, Purvis G (2013) The influence of conservation field margins in intensively managed grazing land on communities of five arthropod trophic groups. Insect Conservation and Diversity 6:201–211CrossRefGoogle Scholar
  17. Andersson GK, Ekroos J, Stjernman M, Rundlöf M, Smith HG (2014) Effects of farming intensity, crop rotation and landscape heterogeneity on field bean pollination. Agric Ecosyst Environ 184:145–148CrossRefGoogle Scholar
  18. Anjum-Zubair M, Schmidt-Entling MH, Querner P, Frank T (2010) Influence of within-field position and adjoining habitat on carabid beetle assemblages in winter wheat. Agric For Entomol 12:301–306Google Scholar
  19. Anti RS, Gerzabek MH, Haberhauer G, Eder G (2005) Long-term effects of cropped vs. fallow and fertilizer amendments on soil organic matter II. Nitrogen. J Plant Nutr Soil Sci 168:212–218CrossRefGoogle Scholar
  20. Antil RS, Gerzabek MH, Haberhauer G, Eder G (2005) Long-term effects of cropped vs. fallow and fertilizer amendments on soil organic matter—I. Organic carbon. Journal of Plant Nutrition And Soil 168:108–116CrossRefGoogle Scholar
  21. Anyszka Z, Dobrzanski A (2006) Impact of cover crops and herbicides usage on weed infestation, growth and yield of transplanted leek. Journal of Plant Diseases and Protection 20:733–738Google Scholar
  22. Bailey D, Schmidt-Entling MH, Eberhart P, Herrmann JD, Hofer G, Kormann U, Herzog F (2010) Effects of habitat amount and isolation on biodiversity in fragmented traditional orchards. J Appl Ecol 47:1003–1013CrossRefGoogle Scholar
  23. Bailey S, Requier F, Nusillard B, Roberts SP, Potts SG, Bouget C (2014) Distance from forest edge affects bee pollinators in oilseed rape fields. Ecology and Evolution 4:370–380PubMedPubMedCentralCrossRefGoogle Scholar
  24. Baraibar B, Westerman PR, Carrión E, Recasens J (2009) Effects of tillage and irrigation in cereal fields on weed seed removal by seed predators. J Appl Ecol 46:380–387CrossRefGoogle Scholar
  25. Bartomeus I, Vila M, Steffan-Dewenter I (2010) Combined effects of Impatiens glandulifera invasion and landscape structure on native plant pollination. J Ecol 98:440–450CrossRefGoogle Scholar
  26. Bartomeus I, Potts SG, Steffan-Dewenter I, Vaissiere BE, Woyciechowski M, Krewenka KM et al (2014) Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. Peer J 2:e328PubMedPubMedCentralCrossRefGoogle Scholar
  27. Basedow T (1998) The species composition and frequency of Araneae (Araneae) in fields of winter wheat grown under different conditions in Germany. J Appl Entomol 122:585–590CrossRefGoogle Scholar
  28. Batáry P, Sutcliffe L, Dormann CF, Tscharntke T (2013) Organic farming favours insect-pollinated over non-insect pollinated forbs in meadows and wheat fields. PLoS One 8:e54818Google Scholar
  29. Bennewicz J (2011) Aphidivorous Diptera (Diptera: Syrphidae) at field boundaries and woodland edges in an agricultural landscape. Polish Journal of Entomology 80:129–149Google Scholar
  30. Berg A, Ahrne K, Ockinger E, Svensson R, Soderstrom B (2011) Butterfly distribution and abundance is affected by variation in the Swedish forest-farmland landscape. Biol Conserv 144:2819–2831CrossRefGoogle Scholar
  31. van Berkel DB, Verburg PH (2014) Spatial quantification and valuation of cultural ecosystem services in an agricultural landscape. Ecol Indic 37:163–174CrossRefGoogle Scholar
  32. Bianchi FJJA, Van Wingerden WKRE, Griffioen AJ, Van Der Veen M, Van Der Straten MJJ, Wegman RMA, Meeuwsen HAM (2005) Landscape factors affecting the control of Mamestra brassicae by natural enemies in Brussel sprout. Agric Ecosyst Environ 107:145–150CrossRefGoogle Scholar
  33. Bianchi FJJA, Goedhart PW, Baveco JM (2008) Enhanced pest control in cabbage crops near forest in The Netherlands. Landsc Ecol 23:595–602CrossRefGoogle Scholar
  34. Birge T, Fred M (2011) New ideas for old landscapes: using a social-ecological approach for conservation of traditional rural biotopes-a case study from Finland. European Countryside 3:51–67CrossRefGoogle Scholar
  35. Boccaccio L, Petacchi R (2009) Landscape effects on the complex of Bactrocera oleae Hymenoptera and implications for conservation biological control. BioControl 54:607–616CrossRefGoogle Scholar
  36. Bodner G, Loiskandl W, Buchan G, Kaul HP (2008) Natural and management-induced dynamics of hydraulic conductivity along a cover-cropped field slope. Geoderma 146:317–325CrossRefGoogle Scholar
  37. Bodner G, Himmelbauer M, Loiskandl W, Kaul HP (2010) Improved evaluation of cover crop species by growth and root factors. Agron Sustain Dev 30:455–464CrossRefGoogle Scholar
  38. Boller EF, Remund U, Candolfi MP (1988) Hedges as potential sources of Typhlodromus pyri, the most important predatory mite in vineyards of Northern Switzerland. Entomophaga 33:249–255CrossRefGoogle Scholar
  39. Bommarco R, Marini L, Vaissière BE (2012) Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia 169:1025–1032PubMedCrossRefGoogle Scholar
  40. Bonte D, Lanckacker K, Wiersma E, Lens L (2008) Web building flexibility of an orb-web spider in a heterogeneous agricultural landscape. Ecography 31:646–653CrossRefGoogle Scholar
  41. Borin M, Passoni M, Thiene M, Tempesta T (2010) Multiple functions of buffer strips in farming areas. Eur J Agron 32:103–111CrossRefGoogle Scholar
  42. Boulal H, Gómez-Macpherson H (2010) Dynamics of soil organic carbon in an innovative irrigated permanent bed system on sloping land in southern Spain. Agric Ecosyst Environ 139:284–292CrossRefGoogle Scholar
  43. Breitbach N, Tillmann S, Schleuning M, Grünewald C, Laube I, Steffan-Dewenter I, Böhning-Gaese K (2012) Influence of habitat complexity and landscape configuration on pollination and seed-dispersal interactions of wild cherry trees. Oecologia 168:425–437PubMedCrossRefGoogle Scholar
  44. Brittain C, Bommarco R, Vighi M, Settele J, Potts SG (2010) Organic farming in isolated landscapes does not benefit flower-visiting insects and pollination. Biol Conserv 143:1860–1867CrossRefGoogle Scholar
  45. Burgio G, Ferrari R, Pozzati M, Boriani L (2004) The role of ecological compensation areas on predator populations: an analysis on biodiversity and phenology of Coleoptera (Coleoptera) on non-crop plants within hedgerows in Northern Italy. Bulletin of Insectology 57:1–10Google Scholar
  46. Buri P, Humbert JY, Arlettaz R (2014) Promoting pollinating insects in intensive agricultural matrices: field-scale experimental manipulation of hay-meadow mowing regimes and its effects on Hymenoptera. PLoS One 9:e85635PubMedPubMedCentralCrossRefGoogle Scholar
  47. Caballero-López B, Bommarco R, Blanco-Moreno JM, Sans FX, Pujade-Villar J, Rundlöf M, Smith HG (2012) Aphids and their natural enemies are differently affected by habitat features at local and landscape scales. Biol Control 63:222–229CrossRefGoogle Scholar
  48. Cammeraat EL (2004) Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in southeast Spain. Agric Ecosyst Environ 104:317–332CrossRefGoogle Scholar
  49. Campiglia E, Mancinelli R, Radicetti E, Caporali F (2010) Effect of cover crops and mulches on weed control and nitrogen fertilization in tomato (Lycopersicon esculentum mill.) Crop Prot 29:354–363CrossRefGoogle Scholar
  50. Carré G, Roche P, Chifflet R, Morison N, Bommarco R, Harrison-Cripps J et al (2009) Landscape context and habitat type as drivers of bee diversity in European annual crops. Agric Ecosyst Environ 133:40–47CrossRefGoogle Scholar
  51. Carvell C, Meek WR, Pywell RF, Goulson D, Nowakowski M (2007) Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. J Appl Ecol 44:29–40CrossRefGoogle Scholar
  52. Carvell C, Osborne JL, Bourke AFG, Freeman SN, Pywell RF, Heard MS (2011) Bumble bee species’ responses to a targeted conservation measure depend on landscape context and habitat quality. Ecol Appl 21:1760–1771PubMedCrossRefGoogle Scholar
  53. Casalí J, Gastesi R, Álvarez-Mozos J, De Santisteban LM, Lersundi J, Giménez R et al (2008) Runoff, erosion, and water quality of agricultural watersheds in central Navarre (Spain). Agric Water Manag 95:1111–1128CrossRefGoogle Scholar
  54. Castro J, Fernandez-OndoNo E, Rodriguez C, Lallena AM, Sierra M, Aguilar J (2008) Effects of different olive-grove management systems on the organic carbon and nitrogen content of the soil in Jaen (Spain). Soil Tillage Res 98:56–67CrossRefGoogle Scholar
  55. Chifflet R, Klein EK, Lavigne C, Le Feon V, Ricroch AE, Lecomte J, Vaissiere BE (2011) Spatial scale of insect-mediated pollen dispersal in oilseed rape in an open agricultural landscape. J Appl Ecol 48:689–696CrossRefGoogle Scholar
  56. Clough Y, Kruess A, Kleijn D, Tscharntke T (2005) Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. J Biogeogr 32:2007–2014CrossRefGoogle Scholar
  57. Clough Y, Kruess A, Tscharntke T (2007) Local and landscape factors in differently managed arable fields affect the insect herbivore community of a non-crop plant species. J Appl Ecol 44:22–28CrossRefGoogle Scholar
  58. Constantin J, Mary B, Laurent F, Aubrion G, Fontaine A, Kerveillant P, Beaudoin N (2010) Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agric Ecosyst Environ 135:268–278CrossRefGoogle Scholar
  59. Cotes B, Campos M, Pascual F, Ruano F (2010) The ladybeetle community (Coleoptera: Coleoptera) in southern olive agroecosystems of Spain. Environ Entomol 39:79–87PubMedCrossRefGoogle Scholar
  60. Cranmer L, McCollin D, Ollerton J (2012) Landscape structure influences pollinator movements and directly affects plant reproductive success. Oikos 121:562–568CrossRefGoogle Scholar
  61. Daedlow D, Sommer T, Westermann PR (2012) Weed seed predation in organic and conventional cereal fields. Julius-Kühn-Archiv 434:265Google Scholar
  62. Dalin P (2006) Habitat difference in abundance of willow leaf beetle Phratora vulgatissima (Coleoptera: Chrysomelidae): plant quality or natural enemies? Bull Entomol Res 96:629–635PubMedCrossRefGoogle Scholar
  63. Dauber J, Biesmeijer JC, Gabriel D, Kunin WE, Lamborn E, Meyer B et al (2010) Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approach. J Ecol 98:188–196CrossRefGoogle Scholar
  64. De Cauwer, B (2005) Biodiveristy and agro-ecology in field margins. PhD Thesis, Faculty of Bioscience Engineering, Universiteit GentGoogle Scholar
  65. Debras JF, SeNoussi R, Rieux R, Buisson E, Dutoit T (2008) Spatial distribution of an arthropod community in a pear orchard (southern France)—identification of a hedge effect. Agric Ecosyst Environ 127:166–176CrossRefGoogle Scholar
  66. Debras J, Senoussi R, Dutoit T (2010) Hedgerow effects on the distribution of beneficial arthropods in a pear orchard in Southern France. Revue Internationale D’écologie Méditerranéenne International Journal of Mediterranean Ecology 37:75–82Google Scholar
  67. Dennis P, Fry GLA (1992) Field margins—can they enhance natural enemy population-densities and general arthropod diversity on farmland. Agric Ecosyst Environ 40:95–115CrossRefGoogle Scholar
  68. Denys C, Tscharntke T (2002) Plant-insect communities and predator-prey ratios in field margin strips, adjacent crop fields, and fallows. Oecologia 130:315–324PubMedCrossRefGoogle Scholar
  69. Díaz M (1992) Spatial and temporal patterns of granivorous ant seed predation in patchy cereal crop areas of central Spain. Oecologia 91:561–568PubMedCrossRefGoogle Scholar
  70. Diehl E, Mader VL, Wolters V, Birkhofer K (2013) Management intensity and vegetation complexity affect web-building Araneae and their prey. Oecologia 173:579–589PubMedCrossRefGoogle Scholar
  71. Diekötter T, Walther-Hellwig K, Conradi M, Suter M, Frankl R (2006) Effects of landscape elements on the distribution of the rare bumblebee species Bombus muscorum in an agricultural landscape. Biodivers Conserv 15:57–68CrossRefGoogle Scholar
  72. Diekötter T, Kadoya T, Peter F, Wolters V, Jauker F (2010) Oilseed rape crops distort plant–pollinator interactions. J Appl Ecol 47:209–214CrossRefGoogle Scholar
  73. Ditner N, Balmer O, Beck J, Blick T, Nagel P, Luka H (2013) Effects of experimentally planting non-crop flowers into cabbage fields on the abundance and diversity of predators. Biodivers Conserv 22:1049–1061CrossRefGoogle Scholar
  74. Drapela T, Moser D, Zaller JG, Frank T (2008) Spider assemblages in winter oilseed rape affected by landscape and site factors. Ecography 31:254–262CrossRefGoogle Scholar
  75. Drapela T, Frank T, Heer X, Moser D, Zaller JG (2011) Landscape structure affects activity density, body size and fecundity of Pardosa wolf Araneae (Araneae: Lycosidae) in winter oilseed rape. European Journal of Entomology 108:609–614CrossRefGoogle Scholar
  76. Duso C, Malagnini V, Paganelli A, Aldegheri L, Bottini M, Otto S (2004) Pollen availability and abundance of predatory phytoseiid mites on natural and secondary hedgerows. BioControl 49:397–415CrossRefGoogle Scholar
  77. Ekroos J, Piha M, Tiainen J (2008) Role of organic and conventional field boundaries on boreal bumblebees and Lepidoptera. Agric Ecosyst Environ 124:155–159CrossRefGoogle Scholar
  78. Evans DM, Pocock MJ, Brooks J, Memmott J (2011) Seeds in farmland food-webs: resource importance, distribution and the impacts of farm management. Biol Conserv 144:2941–2950CrossRefGoogle Scholar
  79. Fabian Y, Sandau N, Bruggisser OT, Aebi A, Kehrli P, Rohr RP et al (2013) The importance of landscape and spatial structure for Hymenopteran-based food webs in an agro-ecosystem. J Anim Ecol 82:1203–1214PubMedCrossRefGoogle Scholar
  80. Fabian Y, Sandau N, Bruggisser OT, Aebi A, Kehrli P, Rohr RP et al (2014) Plant diversity in a nutshell: testing for small-scale effects on trap nesting wild Hymenoptera and wasps. Ecosphere 5:1–18CrossRefGoogle Scholar
  81. Farwig N, BaiLey D, Bochud E, Herrmann JD, Kindler E, Reusser N et al (2009) Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland. Landsc Ecol 24:919–927CrossRefGoogle Scholar
  82. Felipe Lucia M, Comín FA, Bennett EM (2014) Interactions among ecosystem services across land uses in a floodplain agroecosystem. Ecol Soc 19:20CrossRefGoogle Scholar
  83. Fischer C, Thies C, Tscharntke T (2011) Mixed effects of landscape complexity and farming practice on weed seed removal. Perspectives in Plant Ecology, Evolution and Systematics 13:297–303CrossRefGoogle Scholar
  84. Fliszkiewicz M, Kuśnierczak A, Szymaś B (2012) The accompanying fauna of solitary bee Osmia bicornis (L.) Syn. Osmia rufa (L.) nests settled in different biotopes. Journal of Apicultural Science 56:51–58CrossRefGoogle Scholar
  85. Follain S, Walter C, Legout A, Lemercier B, Dutin G (2007) Induced effects of hedgerow networks on soil organic carbon storage within an agricultural landscape. Geoderma 142:80–95CrossRefGoogle Scholar
  86. Fontana V, Radtke A, Walde J, Tasser E, Wilhalm T, Zerbe S, Tappeiner U (2014) What plant traits tell us: consequences of land-use change of a traditional agro-forest system on biodiversity and ecosystem service provision. Agric Ecosyst Environ 186:44–53CrossRefGoogle Scholar
  87. Fournier E, Loreau M (1999) Effects of newly planted hedges on ground-beetle diversity (Coleoptera, Carabidae) in an agricultural landscape. Ecography 22:87–97CrossRefGoogle Scholar
  88. Frank T (1999) Density of adult Diptera (Dipt., Syrphidae) in sown weed strips acid adjacent fields. J Appl Entomol 123:351–355CrossRefGoogle Scholar
  89. Franzen M, Nilsson SG (2008) How can we preserve and restore species richness of pollinating insects on agricultural land? Ecography 31:698–708CrossRefGoogle Scholar
  90. Gabarra R, Alomar Ò, Castañé C, Goula M, Albajes R (2004) Movement of greenhouse whitefly and its predators between in-and outside of Mediterranean greenhouses. Agric Ecosyst Environ 102:341–348CrossRefGoogle Scholar
  91. Gabriel D, Tscharntke T (2007) Insect pollinated plants benefit from organic farming. Agric Ecosyst Environ 118:43–48CrossRefGoogle Scholar
  92. Gagic, V, Tscharntke, T, Dormann, CF, Gruber, B, Wilstermann, A, Thies, C (2011) Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc R Soc B Biol Sci, rspb20102645Google Scholar
  93. Gagic V, Hänke S, Thies C, Scherber C, Tomanović Ž, Tscharntke T (2012) Agricultural intensification and cereal aphid–parasitoid–hyperparasitoid food webs: network complexity, temporal variability and parasitism rates. Oecologia 170:1099–1109PubMedPubMedCentralCrossRefGoogle Scholar
  94. Gagic V, Hänke S, Thies C, Tscharntke T (2014) Community variability in aphid Hymenoptera versus predators in response to agricultural intensification. Insect Conserv Divers 7:103–112CrossRefGoogle Scholar
  95. Geiger F, Bianchi FJJA, Wäckers FL (2005) Winter ecology of the cabbage aphid Brevicoryne brassicae (L.)(Homo., Aphididae) and its parasitoid Diaeretiella rapae (McIntosh)(Hym., Braconidae: Aphidiidae). J Appl Entomol 129:563–566CrossRefGoogle Scholar
  96. Geiger F, Wackers FL, Bianchi FJJA (2009) Hibernation of predatory arthropods in semi-natural habitats. BioControl 54:529–535CrossRefGoogle Scholar
  97. Geslin B, Gauzens B, Thébault E, Dajoz I (2013) Plant pollinator networks along a gradient of urbanisation. PLoS One 8:e63421PubMedPubMedCentralCrossRefGoogle Scholar
  98. Gladbach DJ, Holzschuh A, Scherber C, Thies C, Dormann CF, Tscharntke T (2011) Crop-noncrop spillover: arable fields affect trophic interactions on wild plants in surrounding habitats. Oecologia 166:433–441PubMedCrossRefGoogle Scholar
  99. Glendell M, Granger SJ, Bol R, Brazier RE (2014) Quantifying the spatial variability of soil physical and chemical properties in relation to mitigation of diffuse water pollution. Geoderma 214:25–41CrossRefGoogle Scholar
  100. Goidts E, van Wesemael BAS, Van Oost K (2009) Driving forces of soil organic carbon evolution at the landscape and regional scale using data from a stratified soil monitoring. Glob Chang Biol 15:2981–3000CrossRefGoogle Scholar
  101. Goller E, Nunnenmacher L, Goldbach HE (1997) Faba beans as a cover crop in organically grown hops: influence on aphids and aphid antagonists. Entomol Res Org Agric 15:279–284Google Scholar
  102. Gómez JA, Llewellyn C, Basch G, Sutton PB, Dyson JS, Jones CA (2011) The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use Manag 27:502–514CrossRefGoogle Scholar
  103. Good JA, Giller PS (1991) The effect of cereal and grass management on staphylinid (Coleoptera) assemblages in south-west Ireland. J Appl Ecol 28:810–826CrossRefGoogle Scholar
  104. Haenke S, Scheid B, Schaefer M, Tscharntke T, Thies C (2009) Increasing syrphid fly diversity and density in sown flower strips within simple vs. complex landscapes. J Appl Ecol 46:1106–1114CrossRefGoogle Scholar
  105. Haenke S, Kovács-Hostyánszki A, Fründ J, Batáry P, Jauker B, Tscharntke T, Holzschuh A (2014) Landscape configuration of crops and hedgerows drives local syrphid fly abundance. J Appl Ecol 51:505–513CrossRefGoogle Scholar
  106. Haschek C, Drapela T, Schuller N, Fiedler K, Frank T (2012) Carabid beetle condition, reproduction and density in winter oilseed rape affected by field and landscape parameters. J Appl Entomol 136:665–674CrossRefGoogle Scholar
  107. Helenius JK, Holopainen JK, Huusela-Veistola E (2008) Ground beetle (Coleoptera, Carabidae) diversity in Finnish arable land. Agric Food Sci 10:261–276Google Scholar
  108. Henriksen CI, Langer V (2013) Road verges and winter wheat fields as resources for wild Hymenoptera in agricultural landscapes. Agric Ecosyst Environ 173:66–71CrossRefGoogle Scholar
  109. Henry M, Fröchen M, Maillet-Mezeray J, Breyne E, Allier F, Odoux JF, Decourtye A (2012) Spatial autocorrelation in honeybee foraging activity reveals optimal focus scale for predicting agro-environmental scheme efficiency. Ecol Model 225:103–114CrossRefGoogle Scholar
  110. Hirsch M, Pfaff S, Wolters V (2003) The influence of matrix type on flower visitors of Centaurea jacea L. Agric Ecosyst Environ 98:331–337CrossRefGoogle Scholar
  111. Holland JM, Oaten H, Southway S, Moreby S (2008) The effectiveness of field margin enhancement for cereal aphid control by different natural enemy guilds. Biol Control 47:71–76CrossRefGoogle Scholar
  112. Holland JM, Birkett T, Southway S (2009) Contrasting the farm-scale spatio-temporal dynamics of boundary and field overwintering predatory Coleoptera in arable crops. BioControl 54:19–33CrossRefGoogle Scholar
  113. Holzschuh A, Steffan-Dewenter I, Kleijn D, Tscharntke T (2007) Diversity of flower-visiting Hymenoptera in cereal fields: effects of farming system, landscape composition and regional context. J Appl Ecol 44:41–49CrossRefGoogle Scholar
  114. Holzschuh A, Steffan-Dewenter I, Tscharntke T (2009) Grass strip corridors in agricultural landscapes enhance nest-site colonization by solitary wasps. Ecol Appl 19:123–132PubMedCrossRefGoogle Scholar
  115. Holzschuh A, Steffan-Dewenter I, Tscharntke T (2010) How do landscape composition and configuration, organic farming and fallow strips affect the diversity of Hymenoptera, wasps and their Hymenoptera? J Anim Ecol 79:491–500PubMedCrossRefGoogle Scholar
  116. Holzschuh, A, Dormann, CF, Tscharntke, T, Steffan-Dewenter, I (2011) Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proc R Soc B Biol Sci, rspb20110268Google Scholar
  117. Holzschuh A, Dudenhöffer JH, Tscharntke T (2012) Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biol Conserv 153:101–107CrossRefGoogle Scholar
  118. Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I (2013) Mass-flowering crops enhance wild bee abundance. Oecologia 172:477–484PubMedCrossRefGoogle Scholar
  119. Hradetzky R, Kromp B (1997) Spatial distribution of flying insects in an organic rye field and an adjacent hedge and forest edge. Entomological Research in Organic Agriculture 15:353–357Google Scholar
  120. Iekarska-Boniecka H, Wilkaniec B, Dolanska-Niedbala E (2008) Parasitic wasps of the Pimplinae subfamily (Hymenoptera, Ichneumonidae) of agricultural landscape refugium habitats in central Wielkopolska. Acta Oecol 7:23–30Google Scholar
  121. Inclán DJ, Cerretti P, Marini L (2014) Interactive effects of area and connectivity on the diversity of tachinid Hymenoptera in highly fragmented landscapes. Landsc Ecol 29:879–889CrossRefGoogle Scholar
  122. Jakobsson A, Ågren J (2014) Distance to semi-natural grassland influences seed production of insect-pollinated herbs. Oecologia 175:199–208PubMedCrossRefGoogle Scholar
  123. Jankauskas B, Jankauskiene G, Fullen MA (2004) Erosion-preventive crop rotations and water erosion rates on undulating slopes in Lithuania. Can J Soil Sci 84:177–186CrossRefGoogle Scholar
  124. Jauker F, Diekotter T, Schwarzbach F, Wolters V (2009) Pollinator dispersal in an agricultural matrix: opposing responses of wild Hymenoptera and Diptera to landscape structure and distance from main habitat. Landsc Ecol 24:547–555CrossRefGoogle Scholar
  125. Jonason D, Smith HG, Bengtsson J, Birkhofer K (2013) Landscape simplification promotes weed seed predation by carabid Coleoptera (Coleoptera: Carabidae). Landsc Ecol 28:487–494CrossRefGoogle Scholar
  126. Josso C, Le Ralec A, Raymond L, Saulais J, Baudry J, Poinsot D, Cortesero AM (2013) Effects of field and landscape variables on crop colonization and biological control of the cabbage root fly Delia radicum. Landsc Ecol 28:1697–1715CrossRefGoogle Scholar
  127. Kells AR, Holland JM, Goulson D (2001) The value of uncropped field margins for foraging bumblebees. J Insect Conserv 5:283–291CrossRefGoogle Scholar
  128. Kiss J, Kádár F, Kozma E, Tóth I (1993) Importance of various habitats in agricultural landscape related to integrated pest management: a preliminary study. Landsc Urban Plan 27:191–198CrossRefGoogle Scholar
  129. Klaus VH, Kleinebecker T, Prati D, Gossner MM, Alt F, Boch S et al (2013) Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility? Agric Ecosyst Environ 177:1–9CrossRefGoogle Scholar
  130. Koerner W, Dupouey JL, Dambrine E, Benoit M (1997) Influence of past land use on the vegetation and soils of present day forest in the Vosges mountains, France. J Ecol 85:351–358CrossRefGoogle Scholar
  131. Kohler F, Verhulst J, KNop E, Herzog F, Kleijn D (2007) Indirect effects of grassland extensification schemes on pollinators in two contrasting European countries. Biol Conserv 135:302–307CrossRefGoogle Scholar
  132. Kohler F, Verhulst J, Van Klink R, Kleijn D (2008) At what spatial scale do high-quality habitats enhance the diversity of forbs and pollinators in intensively farmed landscapes? J Appl Ecol 45:753–762CrossRefGoogle Scholar
  133. Korpela EL, Hyvönen T, Lindgren S, Kuussaari M (2013) Can pollination services, species diversity and conservation be simultaneously promoted by sown wildflower strips on farmland? Agric Ecosyst Environ 179:18–24CrossRefGoogle Scholar
  134. Kosmas C, Danalatos N, Cammeraat LH, Chabart M, Diamantopoulos J, Farand R et al (1997) The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 29:45–59CrossRefGoogle Scholar
  135. Kovács-Hostyánszki A, Batáry P, Báldi A (2011) Local and landscape effects on bee communities of Hungarian winter cereal fields. Agric For Entomol 13:59–66CrossRefGoogle Scholar
  136. Kovács-Hostyánszki A, Haenke S, Batáry P, Jauker B, Báldi A, Tscharntke T, Holzschuh A (2013) Contrasting effects of mass-flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecol Appl 23:1938–1946PubMedCrossRefGoogle Scholar
  137. Krause B, Culmsee H (2013) The significance of habitat continuity and current management on the compositional and functional diversity of grasslands in the uplands of Lower Saxony, Germany. Flora-Morphology, Distribution, Functional Ecology of Plants 208:299–311CrossRefGoogle Scholar
  138. Krauss J, Gallenberger I, Steffan-Dewenter I (2011) Decreased functional diversity and biological pest control in conventional compared to organic crop fields. PLoS One 6:e19502PubMedPubMedCentralCrossRefGoogle Scholar
  139. Krewenka KM, Holzschuh A, Tscharntke T, Dormann CF (2011) Landscape elements as potential barriers and corridors for Hymenoptera, wasps and Hymenoptera. Biol Conserv 144:1816–1825CrossRefGoogle Scholar
  140. Kromp B, Steinberger K-H (1992) Grassy field margins and arthropod diversity—a case-study on ground Coleoptera and Araneae in Eastern Austria (Coleoptera, Carabidae, Arachnida, Aranei, Opiliones). Agric Ecosyst Environ 40:71–93CrossRefGoogle Scholar
  141. Kruess A (2003) Effects of landscape structure and habitat type on a plant-herbivore-parasitoid community. Ecography 26:283–290CrossRefGoogle Scholar
  142. Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science (Washington) 264:1581–1584CrossRefGoogle Scholar
  143. Kuussaari M, Hyvönen T, Härmä O (2011) Pollinator insects benefit from rotational fallows. Agric Ecosyst Environ 143:28–36CrossRefGoogle Scholar
  144. Lagerlof J, Wallin H (1993) The abundance of arthropods along two field margins with different types of vegetation composition—an experimental-study. Agric Ecosyst Environ 4:141–154CrossRefGoogle Scholar
  145. Lagerlöf J, Starkb J, Svensson B (1992) Margins of agricultural fields as habitats for pollinating insects. Agric Ecosyst Environ 40:117–124CrossRefGoogle Scholar
  146. Langer V (2001) The potential of leys and short rotation coppice hedges as reservoirs for Hymenoptera of cereal aphids in organic agriculture. Agric Ecosyst Environ 87:81–92CrossRefGoogle Scholar
  147. Lanzoni A, Masetti A, Plankesteiner D, Burgio G (2003) Role of field margin habitat and annual flowering plant mixture on parasitization of economic agromyzid pests. Landscape Management For Functional Biodiversity, IOBC wprs Bulletin 26:95–100Google Scholar
  148. Lautenbach S, Kugel C, Lausch A, Seppelt R (2011) Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol Indic 11:676–687CrossRefGoogle Scholar
  149. Le Féon V, Schermann-Legionnet A, Delettre Y, Aviron S, Billeter R, Bugter R et al (2010) Intensification of agriculture, landscape composition and wild bee communities: a large scale study in four European countries. Agric Ecosyst Environ 137:143–150CrossRefGoogle Scholar
  150. Le Féon V, Burel F, Chifflet R, Henry M, Ricroch A, Vaissière BE, Baudry J (2013) Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric Ecosyst Environ 166:94–101CrossRefGoogle Scholar
  151. Lemke A, Poehling HM (2002) Sown weed strips in cereal fields: overwintering site and “source” habitat for Oedothorax apicatus (Blackwall) and Erigone atra (Blackwall)(Araneae: Erigonidae). Agric Ecosyst Environ 90:67–80CrossRefGoogle Scholar
  152. Lye G, Park K, Osborne J, Holland J, Goulson D (2009) Assessing the value of rural stewardship schemes for providing foraging resources and nesting habitat for bumblebee queens (Hymenoptera: Apidae). Biol Conserv 142:2023–2032CrossRefGoogle Scholar
  153. Maalouly M, Franck P, Bouvier J-C, Toubon J-F, Lavigne C (2013) Codling moth parasitism is affected by semi-natural habitats and agricultural practices at orchard and landscape levels. Agric Ecosyst Environ 169:33–42CrossRefGoogle Scholar
  154. MacFadyen S, Gibson R, Raso L, Sint D, Traugott M, Memmott J (2009) Parasitoid control of aphids in organic and conventional farming systems. Agric Ecosyst Environ 133:14–18CrossRefGoogle Scholar
  155. MacLeod A (1999) Attraction and retention of Episyrphus balteatus DeGeer (Diptera: Syrphidae) at an arable field margin with rich and poor floral resources. Agric Ecosyst Environ 73:237–244CrossRefGoogle Scholar
  156. Mänd M, Mänd R, Williams IH (2002) Bumblebees in the agricultural landscape of Estonia. Agric Ecosyst Environ 89:69–76CrossRefGoogle Scholar
  157. Marchi C, Andersen LW, Loeschcke V (2013) Effects of land management strategies on the dispersal pattern of a beneficial arthropod. PLoS One 8:e66208PubMedPubMedCentralCrossRefGoogle Scholar
  158. Menta C, Leoni A, Gardi C, Conti FD (2011) Are grasslands important habitats for soil microarthropod conservation? Biodivers Conserv 20:1073–1087CrossRefGoogle Scholar
  159. Meyer B, Jauker F, Steffan-Dewenter I (2009) Contrasting resource-dependent responses of hoverfly richness and density to landscape structure. Basic And Applied Ecology 10:178–186CrossRefGoogle Scholar
  160. Miñarro M, Prida E (2013) Hedgerows surrounding organic apple orchards in North-west Spain: potential to conserve beneficial insects. Agric For Entomol 15:382–390CrossRefGoogle Scholar
  161. Molinillo M, Lasanta T, García-Ruiz JM (1997) Managing mountainous degraded landscapes after farmland abandonment in the Central Spanish Pyrenees. Environ Manag 21:587–598CrossRefGoogle Scholar
  162. Monteiro LB, Lavigne C, Ricci B, Franck P, Toubon J-F, SauphaNor B (2013) Predation of codling moth eggs is affected by pest management practices at orchard and landscape levels. Agric Ecosyst Environ 166:86–93CrossRefGoogle Scholar
  163. Moonen AC, Castro-Rodas N, Bàrberi P, Petacchi R (2006) Field margin structure and vegetation composition effects on beneficial insect diversity at farm scale: a case study on an organic farm near Pisa (Italy). Landscape Management for Functional Biodiversity, IOBC wprs Bulletin 29:77–80Google Scholar
  164. Moreno G, Obrador JJ, Garcia A (2007) Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas. Agric Ecosyst Environ 119:270–280CrossRefGoogle Scholar
  165. Moreno B, Garcia-Rodriguez S, Canizares R, Castro J, Benitez E (2009) Rainfed olive farming in south-eastern Spain: long-term effect of soil management on biological indicators of soil quality. Agric Ecosyst Environ 131:333–339CrossRefGoogle Scholar
  166. Morlat R, Jacquet A (2003) Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward. Am J Enol Vitic 54:1–7Google Scholar
  167. Moschini V, Migliorini P, Sacchetti P, Casella G, Vazzana C (2012) Presence of aphid predators in common wheat (Triticum aestivum L.) in organic and conventional agroecosystems of Tuscany. Mediterranean Journal of Economics. Agric Environ 11:58–61Google Scholar
  168. Murray TE, Fitzpatrick U, Byrne A, Fealy R, Brown MJ, Paxton RJ (2012) Local-scale factors structure wild bee communities in protected areas. J Appl Ecol 49:998–1008CrossRefGoogle Scholar
  169. Nielsen A, Steffan-Dewenter I, Westphal C, Messinger O, Potts SG, Roberts SP et al (2011) Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecol Res 26:969–983CrossRefGoogle Scholar
  170. Novara A, Gristina L, SaladiNo SS, Santoro A, Cerda A (2011) Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil Tillage Res 117:140–147CrossRefGoogle Scholar
  171. Oberg S (2007) Diversity of Araneae after spring sowing—influence of farming system and habitat type. J Appl Entomol 131:524–531CrossRefGoogle Scholar
  172. Öberg S (2009) Influence of landscape structure and farming practice on body condition and fecundity of wolf Araneae. Basic and Applied Ecology 10:614–621CrossRefGoogle Scholar
  173. Ockinger E, Smith HG (2007) Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J Appl Ecol 44:50–59CrossRefGoogle Scholar
  174. Osborne JL, Martin AP, Shortall CR, Todd AD, Goulson D, Knight ME et al (2008) Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. J Appl Ecol 45:784–792CrossRefGoogle Scholar
  175. Östman Ö, Ekbom B, Bengtsson J (2001a) Landscape heterogeneity and farming practice influence biological control. Basic and Applied Ecology 2:365–371CrossRefGoogle Scholar
  176. Östman Ö, Ekbom B, Bengtsson J, Weibull AC (2001b) Landscape complexity and farming practice influence the condition of polyphagous carabid Coleoptera. Ecol Appl 11:480–488CrossRefGoogle Scholar
  177. Paoletti MG (1988) Soil invertebrates in cultivated and uncultivated soils in north eastern Italy. Estratto da redia 71:501–563Google Scholar
  178. Paolettia MG, Boscoloa P, Sommaggioa D (1997) Beneficial insects in fields surrounded by hedgerows in north eastern Italy. Biological Agriculture & Horticulture 15:310–323CrossRefGoogle Scholar
  179. Paredes D, Cayuela L, Campos M (2013) Synergistic effects of ground cover and adjacent vegetation on natural enemies of olive insect pests. Agric Ecosyst Environ 173:72–80CrossRefGoogle Scholar
  180. Parmentier L, Meeus I, Cheroutre L, Mommaerts V, Louwye S, Smagghe G (2014) Commercial bumblebee hives to assess an anthropogenic environment for pollinator support: a case study in the region of Ghent (Belgium). Environ Monit Assess 186:2357–2367PubMedCrossRefGoogle Scholar
  181. Patzold S, Klein C, Brummer GW (2007) Run-off transport of herbicides during natural and simulated rainfall and its reduction by vegetated filter strips. Soil Use Manag 23:294–305CrossRefGoogle Scholar
  182. Peregrina, F., Pérez-Álvarez, E. P., Colina, M., García-Escudero, E. (2012) Cover crops and tillage influence soil organic matter and nitrogen availability in a semi-arid vineyard. Archives of Agronomy and Soil Science, 58(sup1), SS95-SS102.Google Scholar
  183. Persson AS, Smith HG (2013) Seasonal persistence of bumblebee populations is affected by landscape context. Agric Ecosyst Environ 165:201–209CrossRefGoogle Scholar
  184. Péter G, Kádár F, Kiss J, Tóth F (2001) Role of field margin in the winter phenophase of carabid Coleoptera (Coleoptera: Carabidae) in winter wheat field. Integrated Control in Cereal Crops, IOBC wprs Bulletin 24:91–94Google Scholar
  185. Pfiffner L, Luka H (2000) Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric Ecosyst Environ 78:215–222CrossRefGoogle Scholar
  186. Piekarska-Boniecka H, Siatkowski I, Ratynska H (2010) The influence of agricultural landscape structure on the flora and communities of Hymenoptera in statistical terms. Polish Journal of Entomology 79:353–365Google Scholar
  187. Plećaš M, Gagić V, Janković M, Petrović-Obradović O, Kavallieratos NG, TomaNović Ž et al (2014) Landscape composition and configuration influence cereal aphid–parasitoid–hyperparasitoid interactions and biological control differentially across years. Agric Ecosyst Environ 183:1–10CrossRefGoogle Scholar
  188. Pollard KA, Holland JM (2006) Arthropods within the woody element of hedgerows and their distribution pattern. Agric For Entomol 8:203–211CrossRefGoogle Scholar
  189. Pommeresche R, Bakken AK, Korsaeth A (2013) Abundance and diversity of Araneae in barley and young leys. The Journal of Arachnology 41:168–175CrossRefGoogle Scholar
  190. Pons X, Lumbierres B, Comas J, Madeira F, Starý P (2013) Effects of surrounding landscape on parasitism of alfalfa aphids in an IPM crop system in Northern Catalonia. BioControl 58:733–744CrossRefGoogle Scholar
  191. Ponti L, Ricci C, Torricelli R (2003) The ecological role of hedges on population dynamics of Anagrus (Hymenoptera: Mymaridae) in vineyards of Central Italy. Landscape Management for Functional Biodiversity, IOBC wprs Bulletin 26:117–122Google Scholar
  192. Ponti L, Ricci C, Veronesi F, Torricelli R (2005) Natural hedges as an element of functional biodiversity in agroecosystems:the case of a Central Italy vineyard. Bulletin of Insectology 58:19–23Google Scholar
  193. Potts SG, Woodcock BA, Roberts SPM, Tscheulin T, Pilgrim ES, Brown VK, Tallowin JR (2009) Enhancing pollinator biodiversity in intensive grasslands. J Appl Ecol 46:369–379CrossRefGoogle Scholar
  194. Pywell RF, James KL, Herbert I, Meek WR, Carvell C, Bell D, Sparks TH (2005) Determinants of overwintering habitat quality for Coleoptera and Araneae on arable farmland. Biol Conserv 123:79–90CrossRefGoogle Scholar
  195. Rand TA, Tscharntke T (2007) Contrasting effects of natural habitat loss on generalist and specialist aphid natural enemies. Oikos 116:1353–1362CrossRefGoogle Scholar
  196. Rand TA, van Veen FJ, Tscharntke T (2012) Landscape complexity differentially benefits generalized fourth, over specialized third, trophic level natural enemies. Ecography 35:97–104CrossRefGoogle Scholar
  197. Raymond L, Sarthou JP, Plantegenest M, Gauffre B, Ladet S, Vialatte A (2014) Immature Diptera overwinter in cultivated fields and may significantly control aphid populations in autumn. Agric Ecosyst Environ 185:99–105CrossRefGoogle Scholar
  198. Reyniers M, Maertens K, Vrindts E, De Baerdemaeker J (2006) Yield variability related to landscape properties of a loamy soil in central Belgium. Soil Tillage Res 88:262–273CrossRefGoogle Scholar
  199. Ricci B, Franck P, Bouvier JC, Casado D, Lavigne C (2011) Effects of hedgerow characteristics on intra-orchard distribution of larval codling moth. Agric Ecosyst Environ 140:395–400CrossRefGoogle Scholar
  200. Riedinger V, Renner M, Rundlöf M, Steffan-Dewenter I, Holzschuh A (2014) Early mass-flowering crops mitigate pollinator dilution in late-flowering crops. Landsc Ecol 29:425–435CrossRefGoogle Scholar
  201. Rieux R, Simon S, Defrance H (1999) Role of hedgerows and ground cover management on arthropod populations in pear orchards. Agric Ecosyst Environ 73:119–127CrossRefGoogle Scholar
  202. Rundlöf M, Persson AS, Smith HG, Bommarco R (2014) Late-season mass-flowering red clover increases bumble bee queen and male densities. Biol Conserv 172:138–145CrossRefGoogle Scholar
  203. Roschewitz I, Hücker M, Tscharntke T, Thies C (2005) The influence of landscape context and farming practices on parasitism of cereal aphids. Agric Ecosyst Environ 108:218–227CrossRefGoogle Scholar
  204. Roume A, Deconchat M, Raison L, Balent G, Ouin A (2011) Edge effects on ground Coleoptera at the woodlot-field interface are short-range and asymmetrical. Agric For Entomol 13:395–403CrossRefGoogle Scholar
  205. Rundlöf M, Nilsson H, Smith HG (2008) Interacting effects of farming practice and landscape context on bumble bees. Biol Conserv 141:417–426CrossRefGoogle Scholar
  206. Rusch, A, Birkhofer, K, Bommarco, R, Smith, HG, Ekbom, B (2014) Management intensity at field and landscape levels affects the structure of generalist predator communities. Oecologia 1–13Google Scholar
  207. Rusch A, Bommarco R, Jonsson M, Smith HG, Ekbom B (2013) Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J Appl Ecol 50:345–354CrossRefGoogle Scholar
  208. Rusch A, Valantin-Morison M, Roger-Estrade J, Sarthou JP (2012a) Local and landscape determinants of pollen beetle abundance in overwintering habitats. Agric For Entomol 14:37–47CrossRefGoogle Scholar
  209. Rusch A, Valantin-Morison M, Roger-Estrade J, Sarthou JP (2012b) Using landscape indicators to predict high pest infestations and successful natural pest control at the regional scale. Landsc Urban Plan 105:62–73CrossRefGoogle Scholar
  210. Rusch A, Valantin-Morison M, Sarthou JP, Roger-Estrade J (2011) Multi-scale effects of landscape complexity and crop management on pollen beetle parasitism rate. Landsc Ecol 26:473–486CrossRefGoogle Scholar
  211. Samnegård U, Persson AS, Smith HG (2011) Gardens benefit bees and enhance pollination in intensively managed farmland. Biol Conserv 144:2602–2606CrossRefGoogle Scholar
  212. Samu F, Beleznai O, Tholt G (2013) A potential spider natural enemy against virus vector leafhoppers in agricultural mosaic landscapes–corroborating ecological and behavioral evidence. Biol Control 67:390–396CrossRefGoogle Scholar
  213. Sárospataki M, Báldi A, Batáry P, Józan Z, Erdős S, Rédei T (2009) Factors affecting the structure of bee assemblages in extensively and intensively grazed grasslands in Hungary. Community Ecology 10:182–188CrossRefGoogle Scholar
  214. Saska P, Vodde M, Heijerman T, Westerman P, van der Werf W (2007) The significance of a grassy field boundary for the spatial distribution of Coleoptera within two cereal fields. Agric Ecosyst Environ 122:427–434CrossRefGoogle Scholar
  215. Scheid BE, Thies C, Tscharntke T (2011) Enhancing rape pollen beetle parasitism within sown flower fields along a landscape complexity gradient. Agric For Entomol 13:173–179CrossRefGoogle Scholar
  216. Schmidt MH, Tscharntke T (2005a) The role of perennial habitats for central European farmland spiders. Agric Ecosyst Environ 105:235–242CrossRefGoogle Scholar
  217. Schmidt MH, Tscharntke T (2005b) Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. J Biogeogr 32:467–473CrossRefGoogle Scholar
  218. Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42:281–287CrossRefGoogle Scholar
  219. Schneider G, Krauss J, Steffan-Dewenter I (2013) Predation rates on semi-natural grasslands depend on adjacent habitat type. Basic and Applied Ecology 14:614–621CrossRefGoogle Scholar
  220. Schroeter L, Irmler U (2013) Organic cultivation reduces barrier effect or arable fields on species diversity. Agric Ecosyst Environ 164:176–180CrossRefGoogle Scholar
  221. Schüepp C, Herzog F, Entling MH (2014a) Disentangling multiple drivers of pollination in a landscape-scale experiment. Proc R Soc B Biol Sci 281:20132667CrossRefGoogle Scholar
  222. Schüepp C, Uzman D, Herzog F, Entling MH (2014b) Habitat isolation affects plant–herbivore–enemy interactions on cherry trees. Biol Control 71:56–64CrossRefGoogle Scholar
  223. Schulp CJ, Veldkamp A (2008) Long-term landscape–land use interactions as explaining factor for soil organic matter variability in Dutch agricultural landscapes. Geoderma 146:457–465CrossRefGoogle Scholar
  224. Sciarretta A, Trematerra P (2011) Spatio-temporal distribution of Ceratitis capitata population in a heterogeneous landscape in Central Italy. J Appl Entomol 135:241–251CrossRefGoogle Scholar
  225. Scohier A, Ouin A, Farruggia A, Dumont B (2013) Is there a benefit of excluding sheep from pastures at flowering peak on flower-visiting insect diversity? J Insect Conserv 17:287–294CrossRefGoogle Scholar
  226. Scutareanu P, Lingeman R, Drukker B, Sabelis MW (1999) Cross-correlation analysis of fluctuations in local populations of pear psyllids and anthocorid bugs. Ecological Entomology 24:354–362CrossRefGoogle Scholar
  227. Sheridan H, Finn JA, O'DoNovan G (2009) Botanical rejuvenation of field margins and benefits for invertebrate fauna on a drystock farm in County Longford. Biology and Environment-Proceedings of The Royal Irish Academy 109B(2):95–106CrossRefGoogle Scholar
  228. Shvaleva A, Costa e Silva F, Costa JM, Correia A, Anderson M, Lobo-do-Vale R et al (2014) Comparison of methane, nitrous oxide fluxes and CO2 respiration rates from a Mediterranean cork oak ecosystem and improved pasture. Plant Soil 374:883–898Google Scholar
  229. Silva EB, Franco JC, Vasconcelos T, Branco M (2010) Effect of ground cover vegetation on the abundance and diversity of beneficial arthropods in citrus orchards. Bull Entomol Res 100:489–499PubMedCrossRefGoogle Scholar
  230. Simón N, Montes F, Díaz-Pinés E, Benavides R, Roig S, Rubio A (2013) Spatial distribution of the soil organic carbon pool in a Holm oak dehesa in Spain. Plant Soil 366:537–549CrossRefGoogle Scholar
  231. Sjödin NE, Bengtsson J, Ekbom B (2008) The influence of grazing intensity and landscape composition on the diversity and abundance of flower-visiting insects. J Appl Ecol 45:763–772CrossRefGoogle Scholar
  232. Skórka P, Lenda M (2010) Abandoned fields as refuges for Lepidoptera in the agricultural landscapes of Eastern Europe. In: Harris EL, Davies NE (eds) Insect habitats: characteristics, diversity and management. Nova Science Publishers, New York, pp 83–103Google Scholar
  233. Smith J, Potts S, Eggleton P (2008) The value of sown grass margins for enhancing soil macrofaunal biodiversity in arable systems. Agric Ecosyst Environ 127:119–125CrossRefGoogle Scholar
  234. Smits N, Dupraz C, Dufour L (2012) Unexpected lack of influence of tree rows on the dynamics of wheat aphids and their natural enemies in a temperate agroforestry system. Agrofor Syst 85:153–164CrossRefGoogle Scholar
  235. Sonneveld MPW, Van Den Akker JJH (2011) Quantification of C and N stocks in grassland topsoils in a dutch region dominated by livestock farming. J Agric Sci 149:63–71CrossRefGoogle Scholar
  236. Starý P, Havelka J (2008) Fauna and associations of aphid parasitoids in an up-dated farmland area (Czech Republic). Bulletin of Insectology 61:251–276Google Scholar
  237. Steckel J, Westphal C, Peters MK, Bellach M, Rothenwoehrer C, Erasmi S et al (2014) Landscape composition and configuration differently affect trap-nesting Hymenoptera, wasps and their antagonists. Biol Conserv 172:56–64CrossRefGoogle Scholar
  238. Steffan-Dewenter I, Leschke K (2003) Effects of habitat management on vegetation and above-ground nesting Hymenoptera and wasps of orchard meadows in Central Europe. Biodivers Conserv 12:1953–1968CrossRefGoogle Scholar
  239. Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440PubMedCrossRefGoogle Scholar
  240. Steffan-Dewenter I, Munzenberg U, Burger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432CrossRefGoogle Scholar
  241. Świtoniak M (2014) Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. Catena 116:173–184CrossRefGoogle Scholar
  242. Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Landstetter C, Haberhauer G, Gerzabek MH (2012) 14C-labeled organic amendments: characterization in different particle size fractions and humic acids in a long-term field experiment. Geoderma 177-178:39–48PubMedPubMedCentralCrossRefGoogle Scholar
  243. Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285:893–895PubMedCrossRefGoogle Scholar
  244. Thies C, Haenke S, Scherber C, Bengtsson J, Bommarco R, Clement LW et al (2011) The relationship between agricultural intensification and biological control: experimental tests across Europe. Ecol Appl 21:2187–2196PubMedCrossRefGoogle Scholar
  245. Thies C, Roschewitz I, Tscharntke T (2005) The landscape context of cereal aphid–parasitoid interactions. Proc R Soc B Biol Sci 272:203–210CrossRefGoogle Scholar
  246. Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101:18–25CrossRefGoogle Scholar
  247. Thies C, Steffan-Dewenter I, Tscharntke T (2008) Interannual landscape changes influence plant–herbivore–parasitoid interactions. Agric Ecosyst Environ 125:266–268CrossRefGoogle Scholar
  248. Tkaczuk C, Krzyczkowski T, Wegensteiner R (2012) The occurrence of entomopathogenic fungi in soils from mid-field woodlots and adjacent small-scale arable fields. Acta Mycol 47:191–202CrossRefGoogle Scholar
  249. Trichard A, Alignier A, Biju-Duval L, Petit S (2013) The relative effects of local management and landscape context on weed seed predation and carabid functional groups. Basic and Applied Ecology 14:235–245CrossRefGoogle Scholar
  250. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol Appl 12:354–363Google Scholar
  251. Tscheulin T, Neokosmidis L, Petanidou T, Settele J (2011) Influence of landscape context on the abundance and diversity of Hymenoptera in Mediterranean olive groves. Bull Entomol Res 101:557–564PubMedCrossRefGoogle Scholar
  252. Van Geert A, Van Rossum F, Triest L (2010) Do linear landscape elements in farmland act as biological corridors for pollen dispersal? J Ecol 98:178–187CrossRefGoogle Scholar
  253. Verboven HA, Uyttenbroeck R, Brys R, Hermy M (2014) Different responses of Hymenoptera and Diptera to land use in an urban–rural gradient show the importance of the nature of the rural land use. Landsc Urban Plan 126:31–41CrossRefGoogle Scholar
  254. Veres A, Tóth F, Kiss J, Fetykó K, Orosz S, Lavigne C et al (2012) Spatio-temporal dynamics of Orius spp. (Heteroptera: Anthocoridae) abundance in the agricultural landscape. Agric Ecosyst Environ 162:45–51CrossRefGoogle Scholar
  255. Vidal S (1997) Factors influencing the population dynamics of Brevicoryne brassicae in undersown brussels sprouts. Entomological Research in Organic Agriculture 15:285–295Google Scholar
  256. Vollhardt IM, Tscharntke T, Wäckers FL, Bianchi FJ, Thies C (2008) Diversity of cereal aphid Hymenoptera in simple and complex landscapes. Agric Ecosyst Environ 126:289–292CrossRefGoogle Scholar
  257. Weihrauch F (2008) Overwintering of common green lacewings in hibernation shelters in the Hallertau hop growing area. Bulletin of Insectology 61:67–71Google Scholar
  258. Westphal C, Steffan-Dewenter I, Tscharntke T (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett 6:961–965CrossRefGoogle Scholar
  259. Westphal C, Steffan-Dewenter I, Tscharntke T (2009) Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumble bees. J Appl Ecol 46:187–193CrossRefGoogle Scholar
  260. Wiesmeier M, Spörlein P, Geuß U, Hangen E, Haug S, Reischl A et al (2012) Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Glob Chang Biol 18:2233–2245CrossRefGoogle Scholar
  261. Williams A, Hedlund K (2013) Indicators of soil ecosystem services in conventional and organic arable fields along a gradient of landscape heterogeneity in southern Sweden. Appl Soil Ecol 65:1–7CrossRefGoogle Scholar
  262. Williams A, Hedlund K (2014) Indicators and trade-offs of ecosystem services in agricultural soils along a landscape heterogeneity gradient. Appl Soil Ecol 77:1–8CrossRefGoogle Scholar
  263. Winkler K, Wäckers FL, Termorshuizen AJ, van Lenteren JC (2010) Assessing risks and benefits of floral supplements in conservation biological control. BioControl 55:719–727CrossRefGoogle Scholar
  264. Winqvist C, Bengtsson J, Aavik T, Berendse F, Clement LW, Eggers S et al (2011) Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J Appl Ecol 48:570–579CrossRefGoogle Scholar
  265. Wissuwa J, Salamon JA, Frank T (2012) Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in eastern Austria. Soil Biol Biochem 50:96–107PubMedPubMedCentralCrossRefGoogle Scholar
  266. Woodcock BA, Potts SG, Tscheulin T, Pilgrim E, Ramsey AJ, Harrison-Cripps J, Brown VK, Tallowin JR (2009) Responses of invertebrate trophic level, feeding guild and body size to the management of improved grassland field margins. J Appl Ecol 46:920–929CrossRefGoogle Scholar
  267. Yang Z, Singh BR, Sitaula BK (2004) Fractions of organic carbon in soils under different crop rotations, cover crops and fertilization practices. Nutr Cycl Agroecosyst 70:161–166CrossRefGoogle Scholar
  268. Zádorová T, Žížala D, Penížek V, Čejková Š (2014) Relating extent of colluvial soils to topographic derivatives and soil variables in a Luvisol sub-catchment, Central Bohemia, Czech Republic. Soil and Water Research 9:47–57Google Scholar
  269. Zaller JG, Moser D, Drapela T, Schmöger C, Frank T (2008) Insect pests in winter oilseed rape affected by field and landscape characteristics. Basic and Applied Ecology 9:682–690CrossRefGoogle Scholar
  270. Zaller JG, Moser D, Drapela T, Schmöger C, Frank T (2009) Parasitism of stem weevils and pollen beetle in winter oilseed rape is differentially affected by crop management and landscape characteristics. BioControl 54:505–514CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS 2017

Authors and Affiliations

  1. 1.Game and Wildlife Conservation TrustHampshireUK
  2. 2.Centre for Crop System AnalysisWageningen UniversityWageningenThe Netherlands
  3. 3.Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
  4. 4.Centre for Agroecology, Water and ResilienceCoventry UniversityCoventryUK

Personalised recommendations