Agro-ecological functions of crop residues under conservation agriculture. A review

  • Lalaina Ranaivoson
  • Krishna Naudin
  • Aude Ripoche
  • François Affholder
  • Lilia Rabeharisoa
  • Marc Corbeels
Review Article
Part of the following topical collections:
  1. Conservation agriculture


Conservation agriculture, which is based on minimum tillage, permanent soil cover and crop rotations, has widely been promoted as a practice to maintain or improve soil quality and enhance crop productivity. To a large extent, the beneficial effects of conservation agriculture are expected to be provided by permanent soil cover with crop residues. Surface crop residues play an important role for crop growth through their benefits on soil-related structural components and processes in the agro-ecosystem, referred to in this study as agro-ecological functions. Through a meta-analysis of the literature, we have studied the relative effects of surface crop residue levels on the performance of a set of agro-ecological functions compared with a no-till bare soil, i.e., without surface residues. The selected agro-ecological functions were soil water evaporation control, soil water infiltration, soil water runoff control, soil loss control, soil nutrient availability, soil organic carbon (SOC) stocks and gains, weed control and soil meso- and macrofauna abundance. The potential effects of crop residue cover were quantified using boundary line models. Our main findings were (1) 8 t ha−1 of residues were needed to decrease soil water evaporation by about 30% compared to no-till bare soil. (2) To achieve the maximum effect on soil water infiltration, water runoff and soil loss control, residue amounts of at least 2 t ha−1 were required. (3) The effect of increasing the amounts of surface crop residues on soil nutrient supply (N, P and K) was relatively low; the boundary line models were not significant. (4) The average annual SOC gain increased with increasing amounts of residues, with a mean of 0.38 t C ha−1 year−1 with 4 to 5 t ha−1 of residues. (5) Weed emergence and biomass can be reduced by 50% compared to a no-till bare soil with residue amounts of 1 t ha−1 or more. (6) There was a weak response in soil meso- and macrofauna abundance to increasing amounts of surface crop residues. The maximum effect corresponded to an increase of 45% compared to a no-till bare soil and was reached from 10 t ha−1 of residues. Our findings suggest that optimal amounts of surface residues in the practice of conservation agriculture will largely depend on the type of constraints to crop production which can be addressed with mulching.


Mulch Soil water evaporation Soil water infiltration Runoff Erosion Soil nutrient supply Soil organic carbon Weed Mesofauna Macrofauna Conservation tillage Meta-analysis 


  1. Ahmed ZI, Ansar M, Iqbal M, Minhas NM (2007) Effect of planting geometry and mulching on moisture conservation, weed control and wheat growth under rainfed conditions. Pakistan J Bot 39:1189–1195Google Scholar
  2. Anzalone A, Cirujeda A, Aibar J et al (2010) Effect of biodegradable mulch materials on weed control in processing tomatoes. Weed Technol 24:369–377. doi:10.1614/WT-09-020.1 CrossRefGoogle Scholar
  3. Aulakh MS, Doran JW, Walters DT et al (1991) Crop residue type and placement effects on denitrification and mineralization. Soil Sci Soc Am J 1025:1020–1025CrossRefGoogle Scholar
  4. Balwinder-Singh, Eberbach PL, Humphreys E, Kukal SS (2011) The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India. Agric Water Manag 98:1847–1855. doi:10.1016/j.agwat.2011.07.002 CrossRefGoogle Scholar
  5. Benech-Arnold R, Sanchez R, Forcella F et al (2000) Environmental control of dormancy in weed seed banks in soil.pdf. Field Crop Res 67:105–122CrossRefGoogle Scholar
  6. Beri V, Sidhu BS, Bahl GS, Bhat AK (1995) Nitrogen and phosphorus transformations as affected by crop residue management practices and their influence on crop yield. Soil Use Manag 11:51–54. doi:10.1111/j.1475-2743.1995.tb00496.x
  7. Bertol I, Engel FL, Mafra AL et al (2007) Phosphorus, potassium and organic carbon concentrations in runoff water and sediments under different soil tillage systems during soybean growth. Soil Tillage Res 94:142–150. doi:10.1016/j.still.2006.07.008 CrossRefGoogle Scholar
  8. Bilalis D, Sidiras N, Economou G, Vakali C (2003) Effect of different levels of wheat straw soil surface coverage on weed flora in Vicia faba crops. J Agron Crop Sci 189:233–241CrossRefGoogle Scholar
  9. Blanchart E, Bernoux M, Sarda X et al (2007) Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric Conspec Sci 72:81–87Google Scholar
  10. Blanco-Canqui H, Lal R (2007a) Impacts of long-term wheat straw management on soil hydraulic properties under no-tillage. Soil Sci Soc Am J 71:1166–1173. doi:10.2136/sssaj2006.0411 CrossRefGoogle Scholar
  11. Blanco-Canqui H, Lal R (2007b) Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil Tillage Res 95:240–254. doi:10.1016/j.still.2007.01.004 CrossRefGoogle Scholar
  12. Blanco-Canqui H, Lal R (2009) Crop Residue Removal Impacts on Soil Productivity and Environmental Quality. Plant Sci 37–41. doi:10.1080/07352680902776507
  13. Brévault T, Bikay S, Maldès JM et al (2007) Impact of a no-till with mulch soil management strategy on soil macrofauna communities in a cotton cropping system. Soil Tillage Res 97:140–149. doi:10.1016/j.still.2007.09.006 CrossRefGoogle Scholar
  14. Buhler DT, Mester C, Kohler KA (1996) The effect of maize residues and tillage on emergence of Setaria faberi Abutilon theophrasti, Amaranthus retroflexus and Chenopodium album. Weed Res 36:153–165. doi:10.1111/j.1365-3180.1996.tb01811.x CrossRefGoogle Scholar
  15. Bunna S, Sinath P, Makara O et al (2011) Effects of straw mulch on mungbean yield in rice fields with strongly compacted soils. Field Crop Res 124:295–301. doi:10.1016/j.fcr.2011.06.015 CrossRefGoogle Scholar
  16. Caamal-Maldonado JA, Jiménez-Osornio JJ, Torres-Barragán A, Anaya AL (2001) The use of allelopathic legume cover and mulch species for weed control in cropping systems. Agron J 93:27–36CrossRefGoogle Scholar
  17. Calonego JC, Rosolem CA (2013) Phosphorus and potassium balance in a corn–soybean rotation under no-till and chiseling. Nutr Cycl Agroecosyst 96:123–131. doi:10.1007/s10705-013-9581-x CrossRefGoogle Scholar
  18. Campbell CA, Mcconkey BG, Zenlner RP et al (1996a) Long-term effects of tillage and crop rotations on soil organic C and total N in a clay soil in southwestern Saskatchewan. Can J Soil Sci 76:395–401CrossRefGoogle Scholar
  19. Campbell CA, Mcconkey BG, Zentner RP et al (1996b) Tillage and crop rotation effects on soil organic C and N in a coarse-textured Typic Haploboroll in southwestern Saskatchewan. Soil Tillage Res 37:3–14CrossRefGoogle Scholar
  20. Campiglia E, Caporali F, Radicetti E, Mancinelli R (2010) Hairy vetch ( Vicia villosa Roth.) cover crop residue management for improving weed control and yield in no-tillage tomato (Lycopersicon esculentum Mill.) production. Eur J Agron 33:94–102. doi:10.1016/j.eja.2010.04.001 CrossRefGoogle Scholar
  21. Campiglia E, Radicetti E, Mancinelli R (2012) Weed control strategies and yield response in a pepper crop (Capsicum annuum L.) mulched with hairy vetch (Vicia villosa Roth.) and oat (Avena sativa L.) residues. Crop Prot 33:65–73. doi:10.1016/j.cropro.2011.09.016 CrossRefGoogle Scholar
  22. Carvalho JLN, Nogueirol RC, Menandro LMS, et al (2016) Agronomic and environmental implications of sugarcane straw removal : a major review. GCB Bioenergy 1–16. doi: 10.1111/gcbb.12410
  23. Cattan P, Cabidoche Y-M, Lacas J-G, Voltz M (2006) Effects of tillage and mulching on runoff under banana (Musa spp.) on a tropical Andosol. Soil Tillage Res 86:38–51. doi:10.1016/j.still.2005.02.002 CrossRefGoogle Scholar
  24. Chauhan BS (2013) Seed germination ecology of feather lovegrass [Eragrostis tenella (L.) Beauv. Ex Roemer & J.A. Schultes]. PLoS One 8:e79398. doi:10.1371/journal.pone.0079398 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chauhan BS, Abugho SB (2013) Effect of crop residue on seedling emergence and growth of selected weed species in a sprinkler-irrigated zero-till dry-seeded rice system. Weed Sci 61:403–409. doi:10.1614/WS-D-12-00147.1 CrossRefGoogle Scholar
  26. Chauhan BS, Johnson DEE (2011) Ecological studies on Echinochloa crus-galli and the implications for weed management in direct-seeded rice. Crop Prot 30:1385–1391. doi:10.1016/j.cropro.2011.07.013 CrossRefGoogle Scholar
  27. Chauhan BS, Singh RG, Mahajan G et al (2012) Ecology and management of weeds under conservation agriculture: a review. Crop Prot 38:57–65. doi:10.1016/j.cropro.2012.03.010 CrossRefGoogle Scholar
  28. Clapp CE, Allmaras RR, Layese MF et al (2000) Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota. Soil Tillage Res 55:127–142. doi:10.1016/S0167-1987(00)00110-0 CrossRefGoogle Scholar
  29. Corbeels M, Scopel E, Cardoso A et al (2006) Soil carbon storage potential of direct seeding mulch-based cropping systems in the Cerrados of Brazil. Glob Chang Biol 12:1773–1787. doi:10.1111/j.1365-2486.2006.01233.x CrossRefGoogle Scholar
  30. Dickey EC, Shelton DP, Jasa PJ, Peterson T (1985) Soil Erosion from Tillage Systems Used in Soybean and Corn Residues in Soybean and Corn Residues. Trans Am Soc Agric Eng 28:1124–1130Google Scholar
  31. Dunne T, Zhang W, Aubry BF (1991) Effects of rainfall, vegetation, and microtopography on infiltration and runoff. Water Resour Res 27:2271–2285CrossRefGoogle Scholar
  32. FAO (2015) Conservation agriculture. Accessed 16 Feb 2017
  33. Feng Y, Liu Q, Tan C et al (2014) Water and nutrient conservation effects of different tillage treatments in sloping fields. Arid Land Res Manag 28:14–24. doi:10.1080/15324982.2013.811446 CrossRefGoogle Scholar
  34. Findeling A, Ruy S, Scopel E (2003) Modeling the effects of a partial residue mulch on runoff using a physically based approach. J Hydrol 275:49–66. doi: 10.1016/S0022-1694(03)00021-0
  35. Gangwar KS, Singh KK, Sharma SK, Tomar OK (2006) Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. Soil Tillage Res 88:242–252CrossRefGoogle Scholar
  36. Gava R, de Freitas PSL, de Faria RT et al (2013) Soil water evaporation under densities of coverage with vegetable residue. Eng Agric 33:89–98. doi:10.1590/S0100-69162013000100010 Google Scholar
  37. Giller KE, Witter E, Corbeels M, Tittonell P (2009) Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crop Res 114:23–34. doi:10.1016/j.fcr.2009.06.017 CrossRefGoogle Scholar
  38. Gilley JE, Finkner SC, Varvel GE (1986) Runoff and erosion as affected by sorghum and soybean residue. Trans Am Soc Agric Eng 29:1605–1610CrossRefGoogle Scholar
  39. Govaerts B, Sayre KD, Ceballos-Ramirez JM et al (2006) Conventionally tilled and permanent raised beds with different crop residue management: effects on soil C and N dynamics. Plant Soil 280:143–155. doi:10.1007/s11104-005-2854-7 CrossRefGoogle Scholar
  40. Govaerts B, Mezzalama M, Unno Y et al (2007) Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Appl Soil Ecol 37:18–30. doi:10.1016/j.apsoil.2007.03.006 CrossRefGoogle Scholar
  41. Gregory JM (1982) Soil cover prediction with various amounts and types of crop residue. Trans ASABE 25:1333–1337CrossRefGoogle Scholar
  42. Halpern MT, Whalen JK, Madramootoo C a. (2010) Long-term tillage and residue management influences soil carbon and nitrogen dynamics. Soil Sci Soc Am J 74:1211. doi:10.2136/sssaj2009.0406 CrossRefGoogle Scholar
  43. Haynes RJ, Mokolobate MS (2001) Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutr Cycl Agroecosyst 59:47–63. doi:10.1023/A:1009823600950 CrossRefGoogle Scholar
  44. Hendriksen NB (1990) Leaf litter selection by detritivore and geophagous earthworms. Biol Fertil Soils 10:17–21. doi:10.1007/BF00336119 Google Scholar
  45. Hobbs PR (2007) Conservation agriculture: what is it and why is it important for future sustainable food production? J Agric Sci 145:127–137. doi:10.1017/S0021859607006892 CrossRefGoogle Scholar
  46. Hooker BA, Morris TF, Peters R, Cardon ZG (2005) Long-term effects of tillage and corn stalk return on soil carbon dynamics. Soil Sci Soc Am J 69:188–196CrossRefGoogle Scholar
  47. Iqbal M, Ul-Hassan A, van Es HM (2011) Influence of residue management and tillage systems on carbon sequestration and nitrogen, phosphorus, and potassium dynamics of soil and plant and wheat production in semi-arid region. Soil Sci Plant Anal 42:528–547. doi:10.1080/00103624.2011.546929 CrossRefGoogle Scholar
  48. Jagadamma S, Lal R (2010) Distribution of organic carbon in physical fractions of soils as affected by agricultural management. Biol Fertil Soils 46:543–554. doi: 10.1007/s00374-010-0459-7
  49. Jordán A, Zavala LM, Gil J (2010) Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 81:77–85. doi:10.1016/j.catena.2010.01.007 CrossRefGoogle Scholar
  50. Kahlon MS, Lal R, Ann-Varughese M (2012) Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil Tillage Res 126:151–158CrossRefGoogle Scholar
  51. Karlen DL, Wollenhaupt NC, Erbach DC et al (1994) Crop residue effects on soil quality following 10-years of no-till corn. Soil Tillage Res 31:149–167CrossRefGoogle Scholar
  52. Kato-Noguchi H, Kosemura S, Yamamura S et al (1994) Allelopathy of oats. I. Assessment of allelopathic potential of extract of oat shoots and identification of an allelochemical. J Chem Ecol 20:309–314. doi:10.1007/BF02064439 CrossRefPubMedGoogle Scholar
  53. Kladivko EJ (2001) Tillage systems and soil ecology. Soil Tillage Res 61:61–76. doi:10.1016/S0167-1987(01)00179-9 CrossRefGoogle Scholar
  54. Lal R (1984) Mulch requirements for erosion control with the no-till system in the tropics: a review. In: D.E. W (ed) Challenges in African Hydrology and Water Resources, Proceedings of the Harare Symposium. International Association of Hydrological Sciences; IAHS-AISH Publication 144, Washington, DC, USA, pp 475–484Google Scholar
  55. Lal R (1997) Mulching effects on runoff, soil erosion, and crop response on alfisols in western Nigeria. J Sustain Agric 11:135–154. doi:10.1300/J064v11n02_10 CrossRefGoogle Scholar
  56. Lal R (1998) Soil quality changes under continuous cropping for seventeen seasons of an Alfisol in western Nigeria. Land Degrad Dev 9:259–274. doi:10.1002/(SICI)1099-145X(199805/06)9:3<259::AID-LDR290>3.0.CO;2-V CrossRefGoogle Scholar
  57. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science (80- ) 304:1623–1627. doi: 10.1126/science.1097396
  58. Lal R (2008) Managing soil water to improve rainfed agriculture in India. J Sustain Agric 32:51–75. doi:10.1080/10440040802121395 CrossRefGoogle Scholar
  59. Lal R (2009) Soil quality impacts of residue removal for bioethanol production. Soil Tillage Res 102:233–241. doi:10.1016/j.still.2008.07.003 CrossRefGoogle Scholar
  60. Lenka NK, Lal R (2013) Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res 126:78–89. doi:10.1016/j.still.2012.08.011 CrossRefGoogle Scholar
  61. Liu T, Chen X, Hu F et al (2016) Carbon-rich organic fertilizers to increase soil biodiversity: evidence from a meta-analysis of nematode communities. Agric Ecosyst Environ 232:199–207. doi:10.1016/j.agee.2016.07.015 CrossRefGoogle Scholar
  62. Lorenz K, Lal R, Shipitalo MJ (2008) Chemical stabilization of organic carbon pools in particle size fractions in no-till and meadow soils. Biol Fertil Soils 44:1043–1051. doi: 10.1007/s00374-008-0300-8
  63. Lu, Y.-C.C., Watkins, K.B., Teasdale, J.R., Abdul-baki, A. a. (2000) Cover Crops in Sustainable Food Production. Food Rev. Int. 16, 121–157. doi:10.1081/FRI-100100285
  64. Lupwayi NZ, Clayton GW, O’Donovan JT et al (2006) Potassium release during decomposition of crop residues under conventional and zero tillage. Can J Soil Sci 86:473–481CrossRefGoogle Scholar
  65. Macena Da Silva FAM, Pinto HS, Scopel E et al (2006) Water fluxes in maize, millet and soybean plant-residue mulches used in direct seeding. Pesqui Agropecu Bras 41:717–724. doi:10.1590/S0100-204X2006000500001 CrossRefGoogle Scholar
  66. Mannering J V., Meyer LD (1963) The Effects of Various Rates of Surface Mulch on Infiltration and Erosion. Soil Sci Soc Am J 27:84–86. doi:10.2136/sssaj1963.03615995002700010029x
  67. Milne AE, Ferguson RB, Lark RM (2006) Estimating a boundary line model for a biological response by maximum likelihood. Ann Appl Biol 149:223–234. doi:10.1111/j.1744-7348.2006.00086.x CrossRefGoogle Scholar
  68. Mischler RA, Curran WS, Duiker SW, Hyde JA (2010) Use of a rolled-rye cover crop for weed suppression in no-till soybeans. Weed Technol 24:253–261. doi:10.1614/WT-D-09-00004.1 CrossRefGoogle Scholar
  69. Moher D, Liberati A, Tetzlaff J, et al (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses : The PRISMA Statement. Plos Med. doi: 10.1371/journal.pmed.1000097
  70. Naudin K, Scopel E, Andriamandroso ALH et al (2012) Trade-offs between biomass use and soil cover. The case of rice-based cropping systems in the Lake Alaotra region of Madagascar. Exp Agric 48:194–209. doi:10.1017/S001447971100113X CrossRefGoogle Scholar
  71. Nawaz A, Lal R, Shrestha RK, Farooq M (2016) Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in alfisol of Central Ohio. L Degrad Dev 681:673–681. doi:10.1002/ldr.2553 Google Scholar
  72. Ngwira AR, Aune JB, Thierfelder C (2014) On-Farm Evaluation of the Effects of the Principles and Components of Conservation Agriculture on Maize Yield and Weed Biomass in Malawi. Exp Agric 50:591–610. doi: 10.1017/S001447971400009X
  73. Nyakatawa E, Jakkula V (2007) Soil erosion estimation in conservation tillage systems with poultry litter application using RUSLE 2.0 model. Soil Tillage 94:410–419. doi:10.1016/j.still.2006.09.003 CrossRefGoogle Scholar
  74. Obalum SE, Obi ME (2010) Physical properties of a sandy loam Ultisol as affected by tillage-mulch management practices and cropping systems. Soil Tillage Res 108:30–36. doi:10.1016/j.still.2010.03.009 CrossRefGoogle Scholar
  75. Oldeman LR (1998) Soil degradation: a threat to food security? In: International soil reference and information centre. WageningenGoogle Scholar
  76. Panachuki E, Bertol I, Sobrinho TA, et al (2011) Soil and water loss and water infiltration in red latosol under different management systems. Rev Bras Cienc do Solo 35:1777–1786. doi:10.1590/S0100-06832011000500032
  77. Peachey RE, William RD, Mallory-smith C (2004) Effect of no-till or conventional planting and cover crops residues on weed emergence in vegetable row crop 1. Weed Technol 18:1023–1030. doi:10.1614/WT-03-205R CrossRefGoogle Scholar
  78. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. doi:10.1127/0941-2948/2006/0130 CrossRefGoogle Scholar
  79. Pereira JL, Picanço MC, Pereira EJG et al (2010) Influence of crop management practices on bean foliage arthropods. Bull Entomol Res 100:679–688. doi:10.1017/S0007485310000039 CrossRefPubMedGoogle Scholar
  80. Pradhan PR, Pandey RN, Behera UK et al (2011) Tillage and crop residue management practices on crop productivity, phosphorus uptake and forms in wheat (Triticum aestivum)-based cropping systems. Indian J Agric Sci 81:1168–1173Google Scholar
  81. Radicetti E, Mancinelli R, Campiglia E (2013) Impact of managing cover crop residues on the floristic composition and species diversity of the weed community of pepper crop (Capsicum annuum L.) Crop Prot 44:109–119. doi:10.1016/j.cropro.2012.10.017 CrossRefGoogle Scholar
  82. Rasmussen PE, Collins HP (1991) Long-term impacts of tillage, fertilizer, and crop residue on soil organic matter in temperate semiarid regions. Adv Agron 45:93–134. doi: 10.1016/S0065-2113(08)60039-5
  83. Rohatgi A (2015) WebPlotDigitizer 3.8. Accessed 1 Feb 2016
  84. Rosolem CA, Calonego JC, Foloni JSS (2005) Potassium leaching from millet straw as affected by rainfall and potassium rates. Commun Soil Sci Plant Anal 36:1063–1074. doi:10.1081/CSS-200050497 CrossRefGoogle Scholar
  85. Rosolem CA, Dos Santos FP, Foloni JSS et al (2006) Soil potassium as affected by fertilization over the millet straw and simulated rain. Pesqui Agropecu Bras 41:1033–1040CrossRefGoogle Scholar
  86. Ruy S, Findeling A, Chadoeuf J (2006) Effect of mulching techniques on plot scale runoff: FDTF modeling and sensitivity analysis. J Hydrol 326:277–294. doi:10.1016/j.jhydrol.2005.11.003 CrossRefGoogle Scholar
  87. Sainju UM, Singh BP, Whitehead WF, Wang S (2007) Accumulation and crop uptake of soil mineral nitrogen as influenced by tillage, cover crops, and nitrogen fertilization. Agron J 99:682–691. doi:10.2134/agronj2006.0177 CrossRefGoogle Scholar
  88. Sato S, Comerford NB (2005) Influence of soil pH on inorganic phosphorus sorption and desorption in a humid Brazilian Ultisol. Rev Bras Cienc do Solo 29:685–694. doi:10.1590/S0100-06832005000500004 CrossRefGoogle Scholar
  89. Schneider EC, Gupta SC (1985) Corn emergence as influenced by soil temperature, matric potential, and aggregate size distribution. Soil Sci Soc Am J 49:415–422. doi:10.2136/sssaj1985.03615995004900020029x
  90. Scopel E, Da Silva FAMM, Corbeels M et al (2004) Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24:383–395. doi:10.1051/agro:2004029 CrossRefGoogle Scholar
  91. Scopel E, Findeling A, Chavez Guerra E et al (2005) Impact of direct sowing mulch-based cropping systems on soil carbon, soil erosion and maize yield. Agron Sustain Dev 25:425–432. doi:10.1051/agro:2005041 CrossRefGoogle Scholar
  92. Scopel E, Triomphe B, Affholder F et al (2013) Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agron Sustain Dev 33:113–130. doi:10.1007/s13593-012-0106-9 CrossRefGoogle Scholar
  93. Sharratt B, Zhang M, Sparrow S (2006) Twenty years of conservation tillage research in subarctic Alaska. Soil Tillage Res 91:82–88. doi:10.1016/j.still.2006.01.010 CrossRefGoogle Scholar
  94. Sidiras N, Roth CH (1987) Infiltration measurements with double-ring infiltrometers and a rainfall simulator under different surface conditions on an Oxisol. Soil Tillage Res 9:161–168CrossRefGoogle Scholar
  95. Singh BB, Jones J. (1976) Phosphorous Sorption and Desorption Characteristics of Soil as Affected by Organic Residues. Soil Sci Soc Am J 40:389–394. doi:10.2136/sssaj1976.03615995004000030025x
  96. Smith GD, Coughlan KJ, Yule DF et al (1992) Soil management options to reduce runoff and erosion on a hardsetting alfisol in the semi-arid tropics. Soil Tillage Res 25:195–215CrossRefGoogle Scholar
  97. Spedding TA, Hamel C, Mehuys GR, Madramootoo CA (2004) Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol Biochem 36:499–512. doi:10.1016/j.soilbio.2003.10.026 CrossRefGoogle Scholar
  98. Steiner JL, Schomberg HH, Unger PW, Cresap J (2000) Biomass and residue cover relationships of fresh and decomposing small grain residue. Soil Sci Soc Am J 64:2109–2114CrossRefGoogle Scholar
  99. Stinner BR (1990) Arthropods and other invertebrates in conservation-tillage agriculture. Annu Rev Entomol 35:299–318. doi:10.1146/annurev.en.35.010190.001503
  100. Stumborg M, Townley-Smith L, Coxworth E, East S (1996) Sustainability and economic issues for cereal crop residue export. Can J Plant Sci 76:669–673CrossRefGoogle Scholar
  101. Swanson S, Wilhelm W (1996) Planting Date and Residue Rate Effects on Growth , Partitioning , and Yield of Corn. Agron J 88:205–210Google Scholar
  102. Teasdale JR, Mohler CL (1993) Light transmittance, soil temperature, and soil moisture under residue of hairy vetch and rye. Agron J 85:673–380. doi:10.2134/agronj1993.00021962008500030029x CrossRefGoogle Scholar
  103. Teasdale JR, Mohler CL (2000) The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci 48:385–392. doi:10.1614/0043-1745(2000)048[0385:TQRBWE]2.0.CO;2 CrossRefGoogle Scholar
  104. Teasdale JR, Beste CE, Potts WE (1991) Response of weed to tillage and cover crop residue. Weed Sci. Soc. Am. 39:195–199Google Scholar
  105. TerAvest D, Carpenter-Boggs L, Thierfelder C, Reganold JP (2015) Crop production and soil water management in conservation agriculture, no-till, and conventional tillage systems in Malawi. Agric Ecosyst Environ 212:285–296. doi:10.1016/j.agee.2015.07.011 CrossRefGoogle Scholar
  106. Tian G, Brussaard L, Kang BT (1993) Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: effects on soil fauna. Soil Biol Biochem 25:731–737CrossRefGoogle Scholar
  107. Törnqvist L, Vartia P, Vartia YO, et al (1985) How Should Relative Changes Be Measured ? Am Stat 39:37–41. doi:10.1080/00031305.1985.10479385
  108. Turmel MM-S, Speratti A, Baudron F et al (2014) Crop residue management and soil health: a systems analysis. Agric Syst 134:6–16. doi:10.1016/j.agsy.2014.05.009 CrossRefGoogle Scholar
  109. Verhulst N, Kienle F, Sayre KD et al (2010) Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system. Plant Soil 340:453–466. doi:10.1007/s11104-010-0618-5 CrossRefGoogle Scholar
  110. Vollmer ER, Creamer N, Reberg-Horton C, Hoyt G (2010) Evaluating cover crop mulches for no-till organic production of onions. Hortscience 45:61–70Google Scholar
  111. Wang JB, Chen ZH, Chen LJ et al (2011) Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input amounts. Plant Soil Environ 57:251–257Google Scholar
  112. Webb RA (1972) Use of the boundary line in the analysis of biological data. J Hortic Sci 47:309–319. doi:10.1080/00221589.1972.11514472 CrossRefGoogle Scholar
  113. Webster TM, Scully BT, Grey TL, Culpepper AS (2013) Winter cover crops influence Amaranthus palmeri establishment. Crop Prot 52:130–135. doi:10.1016/j.cropro.2013.05.015 CrossRefGoogle Scholar
  114. Wei K, Chen Z, Zhu A et al (2014) Application of 31P NMR spectroscopy in determining phosphatase activities and P composition in soil aggregates influenced by tillage and residue management practices. Soil Tillage Res 138:35–43. doi:10.1016/j.still.2014.01.001 CrossRefGoogle Scholar
  115. Weston LA (1997) Utilization of Allelopathy for Weed Management in Agroecosystems. Int Inf Syst Agric Sci Technol 88:860–866Google Scholar
  116. Wilhelm W (2004) Crop and Soil Productivity Response to Corn Residue Removal : A Literature Review. Agronomy Journal, 96(1), 1–17Google Scholar
  117. Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094. doi:10.1002/joc.2419 CrossRefGoogle Scholar
  118. Wilson GV, Dabney SM, McGregor KC, Barkoll BD (2004) Tillage and residue effects on runoff and erosion dynamics. Trans Am Soc Agric Eng 47:119–128CrossRefGoogle Scholar
  119. Woyessa YE, Bennie TP (2004) Factors affecting runoff and soil loss under simulated rainfall on a sandy Bainsvlei Amalia soil. S Afr J Plant Soil 21:203–208. doi:10.1080/02571862.2004.10635050 CrossRefGoogle Scholar
  120. Zerner MC, Gill GS, Vandeleur RK (2008) Effect of height on the competitive ability of wheat with oats. Agron J 100:1729–1734CrossRefGoogle Scholar
  121. Zhang X, Li Q, Zhu A et al (2012) Effects of tillage and residue management on soil nematode communities in North China. Ecol Indic 13:75–81. doi:10.1016/j.ecolind.2011.05.009 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS 2017

Authors and Affiliations

  • Lalaina Ranaivoson
    • 1
    • 2
  • Krishna Naudin
    • 2
    • 3
  • Aude Ripoche
    • 2
    • 4
  • François Affholder
    • 2
  • Lilia Rabeharisoa
    • 5
  • Marc Corbeels
    • 2
    • 6
  1. 1.Centre national de recherche appliquée au développement rural (FOFIFA)AntananarivoMadagascar
  2. 2.Agro-ecology and Sustainable Intensification of Annual CropsCentre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)MontpellierFrance
  3. 3.Embrapa CerradosPlanaltinaBrazil
  4. 4.SRR FOFIFAAntsirabeMadagascar
  5. 5.Laboratoire des Radio-Isotopes (LRI)Université d’AntananarivoAntananarivoMadagascar
  6. 6.Sustainable Intensification ProgramInternational Maize and Wheat Improvement Center (CIMMYT)NairobiKenya

Personalised recommendations