Chestnut wood extract in boar diet reduces intestinal skatole production, a boar taint compound

  • Diana Bilić-Šobot
  • Galia Zamaratskaia
  • Martin Krøyer Rasmussen
  • Marjeta Čandek-Potokar
  • Martin Škrlep
  • Maja Prevolnik Povše
  • Dejan Škorjanc
Research Article

Abstract

Abandoning traditional practice of piglet castration will impact the pigmeat sector. As a consequence, there is a need for research aiming at reducing boar taint caused by androstenone and skatole. Skatole is metabolized by cytochrome P450 enzymes (CYP450) in the liver. Skatole hepatic clearance is believed to be hindered by androstenone. Diet ingredients may modify skatole metabolism. Therefore, we tested the effect of hydrolysable tannins. We fed 51 young boars with 1–3 % chestnut wood extract as supplementary diet. After slaughter, the tissues were collected to assess androstenone and skatole accumulation in fat and to measure CYP450 activities, gene, and protein expression in the liver and intestine. Protein expression of two enzymes involved in androstenone metabolism, 3-beta-hydroxysteroid dehydrogenase (3β-HSD) and sulfotransferase family 2A member 1 (SULT2A1), was assessed, and feces collected to evaluate skatole production. Results show that intestinal skatole production in boars supplemented with 3 % of chestnut wood extract was more than halved. The intestinal catalytic activities of CYP450 were tenfold lower than hepatic and were mainly unaffected by tannins. Findings indicate a potential effect of tannins on steroidogenesis, which in the absence of effect on 3β-HSD and SULT2A1 expression suggests lower synthesis of androstenone due to tannins.

Keywords

Skatole Androstenone Cytochrome P450 Tannins 

References

  1. Aldal I, Andresenb Egeli AK, Haugen J-E, Grødum A, Fjetlande O, Eikaas JLH (2005) Levels of androstenone and skatole and the occurrence of boar taint in fat from young boars. Livest Prod Sci 95:121–129. doi:10.1016/j.livprodsci.2004.12.010 CrossRefGoogle Scholar
  2. Athar M, Khan WA, Mukhtar H (1989) Effect of dietary tannic acid on epidermal lung, and forestomach polycyclic aromatic hydrocarbon metabolism and tumorigenicity in Sencar mice. Cancer Res 49:5784–5795PubMedGoogle Scholar
  3. Biagi G, Cipollini I, Paulicks BR, Roth FX (2010) Effect of tannins on growth performance and intestinal ecosystem in weaned piglets. Arch Anim Nutr 64:121–135. doi:10.1080/17450390903461584 CrossRefGoogle Scholar
  4. Bilić-Šobot D, Čandek-Potokar M, Kubale V, Škorjanc D (2014) Boar taint: interfering factors and possible ways to reduce it. Agricultura 11(1/2):35–48Google Scholar
  5. Brunius C, Rasmussen MK, Ekstrand B, Lacoutiere H, Andersson K, Zamaratskaia G (2012) Expression and activities of hepatic cytochrome P450 (CYP1A, CYP2A and CYP2E1) in entire and castrated male pigs. Animal 6(2):271–277. doi:10.1017/S1751731111001674 CrossRefPubMedGoogle Scholar
  6. Brus M, Dolinšek J, Cencič A, Škorjanc D (2013) Effect of chestnut (Castanea sativa Mill.) wood tannins and organic acids on growth performance and faecal microbiota of pigs from 23 to 127 days of age. Bulg J Agric Sci 19(4):841–847Google Scholar
  7. Čandek-Potokar M, Škrlep M, Batorek Lukač N, Zamaratskaia G, Prevolnik Povše M, Velikonja Bolta Š, Kubale V, Bee G (2015) Hydrolysable tannin fed to entire males affects intestinal production, tissue deposition and hepatic clearance of skatole. Vet J 204:162–167. doi:10.1016/j.tvjl.2015.02.012 CrossRefPubMedGoogle Scholar
  8. Font i Furnols M, Carabus A, Munoz I, Čandek-Potokar M, Gispert M (2016) Evolution of testes characteristics in entire and immunocastrated male pigs from 30 to 120 kg live weight as assessed by computed tomopgraphy with perspective on boar taint. Meat Sci 116:8–15. doi:10.1016/j.meatsci.2016.01.008 CrossRefPubMedGoogle Scholar
  9. Jansman AJM, Verstegen MWA, Huisman J, van der Berg JWO (1995) Effects of hulls of faba beans (Vicia faba L.) with a low or high content of condensed tannins on the apparent ileal and fecal digestibility of nutrients and the excretion of endogenous protein in ileal digesta and feces in pigs. J Anim Sci 73:118–127CrossRefPubMedGoogle Scholar
  10. Kocarek TA, Zangar RC, Novak RF (2000) Post-transcriptional regulation of rat CYP2E1 expression : role of CYP2E1 mRNA untranslated regions in control of translational efficiency and message stability. Arch Biochem Biophys 376(1):180–190. doi:10.1006/abbi.2000.1704 CrossRefPubMedGoogle Scholar
  11. Krajka-Kuźniak V, Baer-Dubowska W (2003) The effects of tannic acid on cytochrome P450 and phase II enzymes in mouse liver and kidney. Toxicol Lett 143(2):209–216. doi:10.1016/S0378-4274(03)00177-2 CrossRefPubMedGoogle Scholar
  12. Lee HJ, Choi IH, Kim DH, Amanullah SM, Kim SC (2016) Nutritional characterization of tannin rich chestnut (Castanea) and its meal for pig. J Appl Anim Res 44(1):258–262. doi:10.1080/09712119.2015.1031779 CrossRefGoogle Scholar
  13. Lizardo R, Peiniau J, Aumaitre A (1995) Effect of sorghum on performance, digestibility of dietary components and activities of pancreatic and intestinal enzymes in the weaned piglet. Anim Feed Sci Technol 56:67–82. doi:10.1016/0377-8401(95)00813-3 CrossRefGoogle Scholar
  14. Matal J, Matusokova Z, Tunkova A, Anzenbacherova E, Anzenbacher P (2009) Porcine CYP2A19, CYP2E1 and CYP1A2 forms are responsible for skatole biotransformation in the reconstituted system. Neuroendocrinol Lett 30:36–40PubMedGoogle Scholar
  15. Mennen LI, Walker R, Bennetau-Pellisero C, Scalbert A (2005) Risks and safety of polyphenol consumption1–3. Am J Clin Nutr 81(suppl):326S–329SPubMedGoogle Scholar
  16. Mikstacka R, Gnojkowski J, Baer-Dubowska W (2002) Effect of natural phenols on the catalytic activity of cytochrome P450 2E1. Acta Biochim Pol 49(4):917–925PubMedGoogle Scholar
  17. Mole S, Butler LG, Iason G (1990) Defence against dietary tannins in herbivores: a survey for proline-rich salivary proteins in mammals. Biochem Syst Ecol 18:287–293. doi:10.1016/0305-1978(90)90073-O CrossRefGoogle Scholar
  18. Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86:2010–2037. doi:10.1002/jsfa.2577 CrossRefGoogle Scholar
  19. Murakami S, Muramatsu M, Otomo S (1992) Inhibitory effect of tannic-acids on gastric H+, K+-ATPase. J Nat Prod 55:513–516. doi:10.1021/np50082a022 CrossRefPubMedGoogle Scholar
  20. Pauly C, Spring P, O’Doherty JV, Ampuero Kragten S, Bee G (2008) Performances, meat quality and boar taint of castrates and entire male pigs fed a standard and a raw potato starch-enriched diet. Animal 2:1707–1715. doi:10.1017/S1751731108002826 CrossRefPubMedGoogle Scholar
  21. Rasmussen MK, Zamaratskaia G (2014) Regulation of porcine hepatic cytochrome p450—implication for boar taint. Comput Struct Biotechnol J 11:106–112. doi:10.1016/j.csbj.2014.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Rasmussen M, Ekstrand B, Zamaratskaia G (2011) Comparison of cytochrome P450 concentrations and metabolic activities in porcine hepatic microsomes prepared with two different methods. Toxicology in Vitro 25: 343–346. doi:10.1016/j.tiv.2010.10.007
  23. Rasmussen MK, Brunius C, Zamaratskaia G, Ekstrand B (2012) Feeding dried chicory root to pigs decreases androstenone accumulation in fat by increasing hepatic 3β hydroxysteroid dehydrogenase expression. J Steroid Biochem 130:90–95. doi:10.1016/j.jsbmb.2012.01.003 CrossRefGoogle Scholar
  24. Rodríguez-Estévez V, Sánchez- Rodríguez M, García AR, Gómez-Castro AG (2011) Average daily weight gain of Iberian fattening pigs when grazing natural resources. Livest Sci 137:292–295. doi:10.1016/j.livsci.2010.11.015 CrossRefGoogle Scholar
  25. Smulikowska S, Pastuszewska B, Święch E, Ochtabińska A, Mieczkowska A, Nguyen VC, Buraczewska L (2001) Tannin content affects negatively nutritive values of pea for monogastrics. J Anim Feed Sci 10:511–523Google Scholar
  26. van Leeuwen P, Jansman AJ, Wiebenga J, Koninkx JF, Mouwen JM (1995) Dietary effects of faba-bean (Vicia faba L.) tannins on the morphology and function of the small-intestinal mucosa of weaned pigs. Br J Nutr 73(1):31–39. doi:10.1079/BJN19950006 CrossRefPubMedGoogle Scholar
  27. Wesoly R, Weiler U (2012) Nutritional influences on skatole formation and skatole metabolism in the pig. Animals 2:221–242. doi:10.3390/ani2020221 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Zamaratskaia G, Squires EJ (2009) Biochemical, nutritional and genetic effects on boar taint in entire male pigs. Animal 3(11):1508–1521. doi:10.1017/S1751731108003674 CrossRefPubMedGoogle Scholar
  29. Zamaratskaia, G., Zlabek, V., Chen, G., Madej, A., 2009. Modulation of porcine cytochrome P450 enzyme activities by surgical castration and immunocastration. Animal: An International Journal of Animal Bioscience 3: 1124–1132. doi:10.1017/S1751731109004510
  30. Zamaratskaia G, Rasmussen MK, Škrlep M, Batorek Lukač N, Škorjanc D, Čandek-Potokar M (2015) Tissue-specific regulation of CYP3A by hydrolysable tannins in male pigs. Xenobiotica 2:1–6. doi:10.3109/00498254.2015.1099081 Google Scholar
  31. Zlabek V, Zamaratskaia G (2012) Comparison of three fluorescent CYP3A substrates in two vertebrate models: pig and Atlantic salmon. Animal 6(4):633–640. doi:10.1017/S1751731111002096 CrossRefPubMedGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2016

Authors and Affiliations

  • Diana Bilić-Šobot
    • 1
  • Galia Zamaratskaia
    • 2
  • Martin Krøyer Rasmussen
    • 3
  • Marjeta Čandek-Potokar
    • 1
    • 4
  • Martin Škrlep
    • 4
  • Maja Prevolnik Povše
    • 1
    • 4
  • Dejan Škorjanc
    • 1
  1. 1.Faculty of Agriculture and Life SciencesUniversity of MariborHočeSlovenia
  2. 2.Uppsala BioCenter, Department of Food ScienceSwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Department of Food ScienceAarhus UniversityTjeleDenmark
  4. 4.Agricultural Institute of SloveniaLjubljanaSlovenia

Personalised recommendations