Agronomy for Sustainable Development

, Volume 35, Issue 1, pp 95–119 | Cite as

Bioenergy farming using woody crops. A review

  • Carmen Rocío Rodríguez Pleguezuelo
  • Víctor Hugo Durán ZuazoEmail author
  • Charles Bielders
  • Juan Antonio Jiménez Bocanegra
  • Francisco PereaTorres
  • José Ramón Francia Martínez
Review Article


The global energy consumption was 540 EJ in 2010, representing an increase of about 80 % from 1980. Energy demand is predicted to grow more than 50 % by 2025. Fossil fuels will supply about 75 % of the future energy demand in 2030–2050 if there are no significant technological innovations or carbon emission constraints. This will induce in a substantial increase of CO2 atmospheric concentration and, in turn, adverse climatic impacts. A solution to this issue is to replace fossil fuels by renewable fuels such as biomass. For instance cultivated woody biomass shows many advantages such as allowing multiple harvests without having to re-plant. Poplar, eucalyptus, salix, paulownia and black locust are common examples of woody biomass. Here we review the current situation and future tendency of renewable energy focusing on solid biomass in Europe and Spain. We also discuss the potential production for short-rotation plantations in the bioenergy sector and existing constraints for the implantation in Spain in a sustainable context. Countries with low biomass resources and high targets for renewable electricity may have to depend on imported solid biomass, whereas countries with wide solid biomass resources benefit from international markets. The expansion of short-rotation plantations is much lower than expected in some countries such as Spain.


Woody biomass Energy crops Short-rotation plantation Poplar Willow Eucalyptus Paulownia Robinia 



Million-ton equivalent of petroleum

EJ yr−1

ExaJoules per year (prefix exa = ×1018)


Megatonnes of oil equivalent






MegaWatt hour


PetaJoules (prefix peta = ×1015)


TeraWatt hour (prefix tera = ×1012)



GJ ha−1

GigaJoules per hectare (prefix giga = ×10)

twb h−1

Tonnes wet basis per hour


Tonnes of dry matter

gt ha−1

Green tonnes per hectare

gt SMH−1

Green tonnes per schedules machine hour



This publication was sponsored by the following European project: “European regions fostering innovation for sustainable production and efficient use of woody biomass (ROKWOOD)”, FP7-REGIONS-2012-2013-1, Grant Agreement No. 319956.


  1. AAE (2011) La biomasa en Andalucía. Agencia Andaluza de la Energía, Consejería de Economía, Innovación y Ciencia, Junta de Andalucía. Sevilla, SpainGoogle Scholar
  2. Abrahamson LP, Volk TA, Kopp RF, White EH, Ballard JL (2002) Willow biomass producer’s handbook. Syracuse, NY. Accessed 24 April 2013
  3. Amichev BY, Kurz WA, Smyth C, van Reels KCJ (2012) The carbon implications of a large-scale afforestation of agriculturally marginal land with short-rotation willow in Saskatchewan. GCB Bioenergy 4:70–87. doi: 10.1111/j.1757-1707.2011.01110.x Google Scholar
  4. Banse M, van Meijl H, Tabeau A, Woltjer G, Hellmann F, Verburg PH (2011) Impact of EU biofuel policies on world agricultural production and land use. Biomass Bioenergy 35:2385–2390. doi: 10.1016/j.biombioe.2010.09.001 Google Scholar
  5. Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28. doi: 10.1016/S0961-9534(02)00185-X Google Scholar
  6. Böhm C, Quinkenstein A, Freese D (2011) Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Ann Forest Res 54:215–227Google Scholar
  7. Börjesson P, Berndes G (2006) The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenergy 30:428–438. doi: 10.1016/j.biombioe.2005.11.018 Google Scholar
  8. Broeckx LS, Verlinden MS, Ceulemans R (2012) Establishment and two-year growth of a bio-energy plantation with fast-growing Populus tress in Flanders (Belgium): effects of genotype and former land use. Biomass Bioenerg 42:151–163. doi: 10.1016/j.biombioe.2012.03.005 Google Scholar
  9. Busch G (2012) GIS-based tools for regional assessments and planning processes regarding potential environmental effects of poplar SRC. Bioenergy Res 5:584–605. doi: 10.1007/s12155-012-9224-0 Google Scholar
  10. Butnar I, Rodrigo J, Gasol CM, Castells F (2010) Life-cycle assessment of electricity from biomass: case studies of two biocrops in Spain. Biomass Bioenergy 34:1780–1788. doi: 10.1016/j.biombioe.2010.07.013 Google Scholar
  11. Cao Y, Lehto T, Piirainen S, Kukkonen JVK, Pelkonen P (2012) Effects of planting orientation and density on the soil solution chemistry and growth of willow cuttings. Biomass Bioenergy 46:165–173. doi: 10.1016/j.biombioe.2012.09.006 Google Scholar
  12. Cerdá TE (2012) La biomasa en España: una fuente de energía renovable con gran futuro. Fundación Ideas. Accessed 15 August 2014
  13. Cerdá E, Caparrós A, Ovando P (2008) Bioenergía en la Unión Europea. Ekonomiaz 67:156–181Google Scholar
  14. Ciria CMP (2011) Desarrollo de los cultivos energéticos leñosos en España. Vida Rural 329Google Scholar
  15. de Andalucía J (2012) Ensayos con cultivos energéticos. Periodo, 2005–2010. Síntesis de resultados y principales conclusiones. Agencia de Gestión Agraria y Pesquera de Andalucía. CAPMA, Sevilla, SpainGoogle Scholar
  16. de Vries BJ, van Vuuren DP, Hoogwijk MM (2007) Renewable energy sources: their global potential for the first-half of the 21st century at a global level: an integrated approach. Energ Policy 35:2590–2610. doi: 10.1016/j.enpol.2006.09.002 Google Scholar
  17. Deckmyn G, Muys B, García QJ, Ceulemans R (2004) Carbon sequestration following afforestation of agricultural soils: comparing oak/beech forest to short-rotation poplar coppice combining a process and carbon accounting model. Glob Chang Biol 10:1482–1491. doi: 10.1111/j.1365-2486.2004.00832.x Google Scholar
  18. Di Matteo G, Sperandio G, Verani S (2012) Field performance of poplar for bioenergy in Southern Europe after two coppicing rotations: effects of clone and planting density. iForest-Biogeosciences Forestry 5:224–229. doi: 10.3832/ifor0628-005 Google Scholar
  19. Dimitriou I, Rosenqvist H (2011) Sewage sludge and wastewater fertilization of short rotation coppice (SRC) for increased bioenergy production—biological and economic potential. Biomass Bioenergy 35:835–842. doi: 10.1016/j.biombioe.2010.11.010 Google Scholar
  20. Dimitriou I, Rosenqvist H, Berndes G (2011) Slow expansion and low yields of willow short rotation coppice in Sweden; implications for future strategies. Biomass Bioenergy 35:4613–4618. doi: 10.1016/j.biombioe.2011.09.006 Google Scholar
  21. Dimitriou I, Mola YB, Aronsson P, Eriksson J (2012) Changes in organic carbon and trace elements in the soil of willow short rotation coppice plantations. Bioenergy Res 5:563–572. doi: 10.1007/s12155-012-9215-1 Google Scholar
  22. Dinica V (2009) Biomass power: exploring the diffusion challenges in Spain. Renew Sust Energy Rev 13:1551–1559. doi: 10.1016/j.rser.2008.10.002 Google Scholar
  23. Djomo SN, Kasmioui OE, Ceulemans R (2011) Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. Glob Chang Biol Bioenerg 3:181–197. doi: 10.1111/j.1757-1707.2010.01073.x Google Scholar
  24. Dornburg V, Faaij A, Verweij P, Langeveld H, van de Ven G (2008) Biomass assessment: global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Climate change scientific assessment and policy analysis (WAB) programmeGoogle Scholar
  25. Durán ZVH, Rodríguez PCR, Francia MJR, Martínez RA, Arroyo PL, Cárceles RB, Navarro MMC (2008) Benefits of plant strips for sustainable mountain agriculture. Agron Sustain Develop 4:497–505. doi: 10.1051/agro:2008020 Google Scholar
  26. Durán ZVH, Jiménez BJA, Perea TF, Rodríguez PCR, Francia MJR (2014) Biomass yield potential of paulownia trees in a semi-arid Mediterranean environment (S Spain). Int J Renew Energy Res 4:789–793Google Scholar
  27. Ericsson T (1994) Nutrient dynamics and requirements of forest crops. N Z J For Sci 24:133–68Google Scholar
  28. Ericsson K, Rosenqvist H, Ganko E, Pisarek M, Nilsson L (2006) An agro-economic analysis of willow cultivation in Poland. Biomass Bioenergy 30:16–27Google Scholar
  29. Esteban LS, Carrasco JE (2011) Biomass resources and costs: assessment in different EU countries. Biomass Bioenergy 35:S21–S30. doi: 10.1016/j.biombioe.2011.03.045 Google Scholar
  30. Fernández J, Sánchez J, Esteban B (2009) Potential lignocellulosic biomass production from dedicated energy crops in marginalized agricultural lands of Spain. 17th European Biomass conference, Hamburg, Germany, pp 131–137Google Scholar
  31. Fiala M, Bacenetti J (2012) Economic, energetic and environmental impact of short rotation coppice harvesting operations. Biomass Bioenergy 42:107–113. doi: 10.1016/j.biombioe.2011.07.004 Google Scholar
  32. Fischer G, Prieler S, van Velthuizen H, Berndes G, Faaij A, Londo M, de Wit M (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures, part II: land use scenarios. Biomass Bioenergy 34:173–187. doi: 10.1016/j.biombioe.2009.07.008 Google Scholar
  33. Gabriele B, Nguyen TN, Paupu P, Vial E (2013) Life cycle assessment of eucalyptus short rotation coppices for bioenergy production in southern France. GCB Bioenergy 6:30–42. doi: 10.1111/gcbb.12008 Google Scholar
  34. García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103:249–258. doi: 10.1111/gcbb.12008 PubMedGoogle Scholar
  35. García MI, Muñoz LF, Rey PJM (2014) Qualitative insights into the commercialization of wood pellets: the case of Andalusia, Spain. Biomass Bioenergy 64:245–255. doi: 10.1016/j.biombioe.2014.02.013 Google Scholar
  36. Gasol CM, Martínez S, Rigola M, Rieradevall J, Anton A, Carrasco J (2009) Feasibility assessment of poplar bioenergy systems in the Southern Europe. Renew Sust Energy Rev 13:801–812. doi: 10.1016/j.rser.2008.01.010 Google Scholar
  37. Gasol CM, Brun F, Mosso A, Rieradevall J, Gabarell X (2010) Economic assessment and comparison of acacia energy crop with annual traditional crops in Southern Europe. Energy Policy 38:592–597. doi: 10.1016/j.enpol.2009.10.011 Google Scholar
  38. Gerbens LW, Hoekstra AY, Van Der Meer TH (2009) The water footprint of bioenergy. Proc Natl Acad Sci U S A 106:10219–10223. doi: 10.1073/pnas.0812619106 Google Scholar
  39. Gexbioma (2013) General de Explotaciones para biomasa. Paulownia, la mejor alternativa para el futuro. Accessed 28 August 2013
  40. Goldemberg J (2002) Brazilian energy initiative, world summit on sustainable development; Setembro. Joanesburgo, South AfricaGoogle Scholar
  41. Gómez A, Zubizarreta J, Dopazo C, Fueyo N (2011) Spanish energy roadmap to 2020. Socioeconomic implications of renewable targets. Energy 36:1973–1985. doi: 10.1016/ Google Scholar
  42. González GS, Martínez GC, Moreira MT, Gabarrell X, Rieradeevall PJ, Feijoo G (2011) Environmental assessment of black locust (Robinia pseudoacacia L.)-based ethanol as potential transport fuel. Int J Lyfe Cycl Assess 16:465–477. doi: 10.1007/s11367-011-0272-z Google Scholar
  43. González GS, Moreira MT, Jeijoo G (2012a) Environmental aspects of eucalyptus based ethanol production and use. Sci Total Environ 438:1–8. doi: 10.1016/j.scitotenv.2012.07.044 Google Scholar
  44. González GS, Moreira MT, Feijoo G, Murphy RJ (2012b) Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar). Biomass Bioenergy 39:378–388. doi: 10.1016/j.biombioe.2012.01.028 Google Scholar
  45. Grüenewald H, Brandt BKV, Uwe SB, Bens O, Kendzia G, Hüttl FR (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29:319–328. doi: 10.1016/j.ecoleng.2006.09.012 Google Scholar
  46. Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, Wühlisch G (2009) Robinia pseudoacacia L.: a lesser known tree species for biomass production. Bioenergy Res 2:123–133. doi: 10.1007/s12155-009-9038-x Google Scholar
  47. Guo LB, Sims REH, Horne DJ (2006) Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zealand: II. Litter fall and nutrient return. Biomas Bioenergy 30:393–404. doi: 10.1016/j.ecoleng.2006.09.012 Google Scholar
  48. Hämäläinen S, Näyhä A, Pesonen HL (2011) Forest biorefineries. A business opportunity for the Finnish forest cluster. J Clean Prod 19:1884–1891. doi: 10.1016/j.jclepro.2011.01.011 Google Scholar
  49. Havlicková K, Weger J (2009) Short rotation coppice for energy purposes—economy conditions and landscape functions in the Czech Republic. Proceedings of ISES World Congress 2007 (Vol. 1–5). Beijing, China, pp 2482–2487Google Scholar
  50. Heinimö J, Junginger M (2009) Production and trading of biomass for energy—an overview of the global status. Biomass Bioenergy 33:1310–1320. doi: 10.1016/j.biombioe.2009.05.017 Google Scholar
  51. Herranz JL (2008) Estrategia para el uso energético de la biomasa forestal residual. Congreso Nacional de Medio Ambiente, CONAMA9Google Scholar
  52. Hoefnagels R, Resch G, Junginger M, Faaij A (2014) International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union. Apl Energy 131:139–157. doi: 10.1016/j.apenergy.2014.05.065 Google Scholar
  53. Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W (2005) Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 29:225–257. doi: 10.1016/j.biombioe.2005.05.002 Google Scholar
  54. IDAE (2005) Plan de las energías renovables en España 2005–2010, MadridGoogle Scholar
  55. IDAE (2011) Empleo asociado al impulso de las energías renovables. Estudio Técnico, MadridGoogle Scholar
  56. IDAE Statistics (2012) Estudios, informes y estadísticas. Accessed 29 Nov 2013
  57. International Energy Agency (2010) World Energy Outlook 2010. International Energy AgencyGoogle Scholar
  58. International Energy Agency (2011) Technology roadmap: biofuels for transport. International Energy Agency, ParisGoogle Scholar
  59. Iriarte C (2008) Caracterización del olmo (Ulmus pumila L.) como cultivo energético. Dissertation, Universidad Politécnica de MadridGoogle Scholar
  60. Iriarte A, Rieradevall J, Gabarrell X (2010) Life cycle assessment of sunflower and rapeseed as energy crop under Chilean conditions. J Clean Prod 18:336–345. doi: 10.1016/j.jclepro.2009.11.004 Google Scholar
  61. Isebrands JG, Karnosky DF (2001) Environmental benefits of poplar culture. In: Dickmann DE, Isebrands JG, Eckenwalder JE, Richardson J (eds) Poplar culture in North America. NRC Research Press, Ottawa, pp 207–218Google Scholar
  62. Jianbo L (2006) Energy balance and economic benefits of two agroforestry systems in northern and southern China. Agr Ecosyst Environ 116:255–262. doi: 10.1016/j.agee.2006.02.015 Google Scholar
  63. Jiménez L, Rodríguez A, Ferrer JL, Pérez A, Angulo V (2005) Paulownia, a fast-growing plant, as a raw material for paper manufacturing. Afinidad 62:100–105Google Scholar
  64. Jiménez BJA, Perea TF, Lobo GJ, Pavón PL, Durán ZVH (2013a) Evaluación del cultivo del eucalipto para la producción de biomasa en Andalucía. Vida Rural 366:62–66Google Scholar
  65. Jiménez BJA, Lobo GJ, Pavón PL, Durán ZVH, Perea TF (2013b) Biomasa de cultivos energéticos para la producción sostenible de energía. Energética XXI 1356:53–55Google Scholar
  66. Johnson J, Coleman MUFS, Gesch R, Jaradat A, Mitchell R, Reicosky D (2007) Biomass bioenergy crops in the United States: a changing paradigm. Am J Plant Sci Biotechnol 1:1–18Google Scholar
  67. Jones JM, Bridgeman TG, Darwell LI, Gudka B, Saddawi A, Williams A (2012) Combustion properties of torrefied willow compared with bituminous coals. Fuel Process Technol 101:1–9. doi: 10.1016/j.fuproc.2012.03.010 Google Scholar
  68. Junginger M, van Dam J, Alakangas E, Virkkunen M, Vesterinen P, Veijonen K (2010) Solutions to overcome barriers in bioenergy markets in Europe-D2.2. VTT-R-01700Google Scholar
  69. Kalaycioglu H, Deniz I, Hiziroglu S (2005) Some of the properties of particleboard made from Paulownia. J Wood Sci 51:410–414. doi: 10.1007/s10086-004-0665-8 Google Scholar
  70. Kellezi M, Stafasani M, Kortoci Y (2012) Evaluation of biomass supply chain from Robinia pseudoacacia L. SRF plantations on abandoned lands. J Life Sci 6:187–193Google Scholar
  71. Kumar R, Pandey KK, Chandrashekar N, Mohan S (2011) Study of age and height wise variability on calorific value and other fuel properties of Eucalyptus hybrid, Acacia auriculaeformis and Casuarina equisetifolia. Biomass Bioenergy 35:1339–1344. doi: 10.1016/j.biombioe.2010.12.031 Google Scholar
  72. Kumarmangalam YN, Nanda VB, Henderson K, Frost LJ, Marshay SW, Arun DS, Joshee N (2013) A review of Paulownia biotechnology: a short rotation, fast growing multipurpose bioenergy tree. Am J Plant Sci 4:2070–2082. doi: 10.4236/ajps.2013.411259 Google Scholar
  73. Laborde, D (2011) Assessing the land use change consequences of European biofuels policies. International Food Policy Research Institute (IFPRI). Atlas ConsortiumGoogle Scholar
  74. Labrecque M, Teodorescu TI (2003) High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass Bioenergy 25:135–146. doi: 10.1016/S0961-9534(02)00192-7 Google Scholar
  75. López F, Pérez A, Zamudio MAM, de Alba HE, Garcia JC (2012) Paulownia as raw material for solid biofuel and cellulose pulp. Biomass Bioenergy 45:77–86. doi: 10.1016/j.biombioe.2012.05.010 Google Scholar
  76. Lu J, Zhao X, Ding L (2004) Typical patterns of ecological engineering in southern China. Korean J Eco 27:1–7Google Scholar
  77. MAGRAMA (2012) Anuario de estadística agraria. Ministerio de Agricultura Alimentación y Medio Ambiente, Madrid, Spain. Accessed 25 November 2013
  78. Maier J, Vetter R (2004) Biomass yield and fuel characteristics of short-rotation coppice (Willow, Poplar, Empress tree), Institute for Land Management Compatible to Environmental Requirements, p219z/menu/1104921l2/index1109769478375.
  79. Malik RK, Green TH, Brown GF, Beyl CA, Sistani KR, Mays DA (2001) Biomass production of short-rotation bioenergy hardwood plantations affected by cover crops. Biomass Bioenergy 21:21–33. doi: 10.1016/S0961-9534(01)00017-4 Google Scholar
  80. Manzone M, Airoldi G, Balsari P (2009) Energetic and economic evaluation of poplar cultivation for the biomass production in Italy. Biomass Bioenergy 33:1258–1264. doi: 10.1016/j.biombioe.2009.05.024 Google Scholar
  81. Martínez GE, Lucas BME, Andrés AM, López SFR, García MFA, del Cerro BA (2010) Aprovechamiento energético de Paulownia spp. en el ámbito Mediterráneo. Rev Montes 102:5–11Google Scholar
  82. Matondi PB, Havnevik K, Beyene A (2011) Biofuels, Land Grabbing and Food Security in Africa Zed Books, London, New YorkGoogle Scholar
  83. McCracken AR, Walsh L, Moore PJ, Lynch M, Cowan P, Dawson M, Watson S (2011) Yield of willow (Salix spp.) grown in short rotation coppice mixtures in a long-term trial. Ann Appl Biol 159:229–243. doi: 10.1111/j.1744-7348.2011.00488.x Google Scholar
  84. Mitchell CP, Stevens EA, Watters MP (1999) Short rotation forestry-operations, productivity and costs based on experience gained in the UK. Forest Ecol Manag 121:123–136. doi: 10.1016/S0378-1127(98)00561-1 Google Scholar
  85. Moiseyev A, Ince P (2000) Alternative scenarios on SRWC as a fiber source for pulp. In: Paper presented at the third biennial conference, Short-Rotation Woody Crops Operations Working Group, Syracuse, NYGoogle Scholar
  86. Mola YB (2011) Trends and productivity improvements from commercial willow plantations in Sweden during the period 1986–2000. Biomass Bioenergy 35:446–453. doi: 10.1016/j.biombioe.2010.09.004 Google Scholar
  87. Otto S, Loddo D, Zanin G (2010) Weed-poplar competition dynamics and yield loss in Italian short-rotation forestry. Weed Res 50:153–162. doi: 10.1111/j.1365-3180.2010.00763.x Google Scholar
  88. Pari L, Civitarese V, Giudice A, Assirelli A, Spinelli R, Santangelo E (2013) Influence of chipping device and storage method on the quality of SRC poplar biomass. Biomass Bioenergy 51:169–176. doi: 10.1016/j.biombioe.2013.01.019 Google Scholar
  89. Pedroli B, Elbersen B, Frederiksen P, Grandin U, Heikkilä R, Henning P, Izakovicová Z, Johansen A, Meiresonne L, Spijker J (2013) Is energy cropping in Europe compatible with biodiversity? Opportunities and threats to biodiversity from land-based production of biomass for bioenergy purposes. Biomass Bioenergy 55:73–86. doi: 10.1016/j.biombioe.2012.09.054 Google Scholar
  90. Pérez S, Renedo CJ, Ortiz A, Mañana M, Silió D (2006) Energy evaluation of the Eucalyptus globulus and the Eucalyptus nitens in the north of Spain (Cantabria). Thermochim Acta 451:57–64. doi: 10.1016/j.tca.2006.08.009 Google Scholar
  91. Pérez CC, Merino A, Rodríguez SR (2011) A management tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens as short rotation woody crops in north-west Spain. Biomass Bioenergy 35:2839–2851. doi: 10.1016/j.biombioe.2011.03.020 Google Scholar
  92. Pérez CC, Sánchez RD, Rodríguez SR, Hernández MJ, Sánchez MM, Cañellas I, Sixto H (2013) Biomass production assessment from Populus spp. short-rotation irrigated crops in Spain. Bioenergy. doi: 10.1111/gcbb.12061 Google Scholar
  93. Pettenella D, Masiero M (2007) Disponibilita di biomasse legnose forestali, agricole e industriali in Italia. In: Gargiulo T, Zoboli R (eds) Una nuova economia de legno-arredo tra industria, energía e cambianento climático. Tipomonza, Milan, pp 171–252Google Scholar
  94. Quinkenstein A, Freese D, Böhm C, Tsonkova P, Hüttl RF (2012) Agroforestry for mine-land reclamation in Germany: capitalizing on carbon sequestration and bioenergy production. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use, advances in agroforestry 9. Springer Science + Business, Dordrecht, pp 313–339Google Scholar
  95. Rédei K, Csiha I, Keserü Z (2011) Black locust (Robinia pseudoacacia L.) short-rotation crops under marginal site conditions. Acta Silv Lign Hung 7:125–132Google Scholar
  96. Rosenqvist H, Dawson M (2005) Economics of willow growing in Northern Ireland. Biomass Bioenergy 28:7–14. doi: 10.1016/j.biombioe.2004.06.001 Google Scholar
  97. Rosenqvist H, Berndes G, Borjesson P (2013) The prospects of costs reductions in willow production in Sweden. Biomass Bioenergy 48:139–147. doi: 10.1016/j.biombioe.2012.11.013 Google Scholar
  98. Rosua JM, Pasadas M (2012) Biomass potential in Andalusia, from grapevines, olives, fruit trees and poplar for providing heating in homes. Renew Sust Energy Rev 16:4190–4195. doi: 10.1016/j.rser.2012.02.035 Google Scholar
  99. Rowe RL, Hanley ME, Goulson D, Clarke DJ, Doncaster CP, Taylor G (2011) Potential benefits of commercial willow SRC for farm-scale plant and invertebrate communities in the agri-environment. Biomass Bioenergy 35:325–336. doi: 10.1016/j.biombioe.2010.08.046 Google Scholar
  100. Ruttens A, Boulet J, Weyens N, Smeets K, Adriansen K, Meers E, van Slycken S, Tack F, Meiresonne L, Thewys T, Witters N, Carleer R, Dupae J, Vangronsveld J (2011) Short rotation coppice culture of willows and poplar as energy crops on metal contaminated agricultural soils. Int J Phytoremediation 13:194–207. doi: 10.1080/15226514.2011.568543 PubMedGoogle Scholar
  101. Scarlat N, Dallemand JF, Banja M (2013) Possible impact of 2020 bioenergy targets on European Union land use. A scenario-based assessment from national renewable energy action plans proposals. Renew Sust Energy Rev 18:595–606. doi: 10.1016/j.rser.2012.10.040 Google Scholar
  102. Schmidt WP, Lamersdorf PN (2012) Biomass production with willow and poplar short rotation coppices on sensitive areas-the impact on nitrate leaching and groundwater recharge in a drinking water catchment near Hanover, Germany. Bioener Res 5:546–562. doi: 10.1007/s12155-012-9237-8 Google Scholar
  103. Scholz V, Ellerbrock R (2002) The growth productivity and environmental impact of the cultivation of energy crops on sandy soil in Germany. Biomass Bioenergy 23:81–92. doi: 10.1016/S0961-9534(02)00036-3 Google Scholar
  104. Schweier J, Becker G (2013) Economics of poplar short rotation coppice plantations on marginal land in Germany. Biomass Bioenergy 59:494–502. doi: 10.1016/j.biombioe.2013.10.020 Google Scholar
  105. Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240. doi: 10.1126/science.1151861 PubMedGoogle Scholar
  106. Sebastián NF, García GD, Rezeau A (2010) Energía de la biomasa (volumen I). Prensas Universitarias de ZaragozaGoogle Scholar
  107. Sevel L, Nord LT, Raulund KR (2012) Biomass production of four willow clones grown as short rotation coppice on two soil types in Denmark. Biomass Bioenergy 46:664–672. doi: 10.1016/j.biombioe.2012.06.030 Google Scholar
  108. Sevigne E, Gasol MC, Brun F, Rovira L, Pagés JM, Camps F, Rieradevall J, Gabarrell X (2011) Water and energy consumption of Populus spp. bioenergy systems: a case study in Southern Europe. Renew Sust Energ Rev 2:1133–1140. doi: 10.1016/j.rser.2010.11.034 Google Scholar
  109. Smeets EMW, Faaij APC, Lewandowski IM, Turkenburg WC (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energ Combust Sci 33:56–106. doi: 10.1016/j.pecs.2006.08.001 Google Scholar
  110. Sochacki SJ, Harper RJ, Smettem KRJ (2007) Estimation of woody biomass production from a short-rotation bio-energy system in semi-arid Australia. Biomass Bioenergy 31:608–616. doi: 10.1016/j.biombioe.2007.06.020 Google Scholar
  111. Solid Biomass Barometer (2012) EurObserv’ER. Accessed 1 November 2013
  112. Spinelli R, Nati C, Magagnotti N (2009) Using modifies foragers to harvest short-rotation poplar plantations. Biomass Bioenergy 33:817–821. doi: 10.1016/j.biombioe.2009.01.001 Google Scholar
  113. Stone KC, Hunt PG, Cantrell KB, Ro KS (2010) The potential impacts of biomass feedstock production on water resource availability. Bioresour Technol 101:2014–2025. doi: 10.1016/j.biortech.2009.10.037 PubMedGoogle Scholar
  114. Styles D, Thorne F, Jones MB (2008) Energy crops in Ireland: an economic comparison of willow and Miscanthus production with conventional farming systems. Biomass Bioenergy 32:407–421. doi: 10.1016/j.biombioe.2007.10.012 Google Scholar
  115. Tallis MJ, Casella E, Henshall PA, Aylott MJ, Randle TJ, Morison JIL, Taylor G (2012) Development and evaluation of ForestGrowth-SRC process-based model for short rotation coppice yield and spatial supply reveals poplar uses water more efficiently than willow. GCB Bioenergy 5:53–66. doi: 10.1111/j.1757-1707.2012.01191.x Google Scholar
  116. Tharakan P, Volk T, Abrahamson L, White E (2003) Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. Biomass Bioenergy 25:571–580. doi: 10.1016/S0961-9534(03)00054-0 Google Scholar
  117. Thomas SCL, Slater FM, Randerson PF (2010) Reducing the establishment costs of a short rotation willow coppice (SRC)-a trial of a novel layflat planting system at upland in mid-Wales. Biomass Bioenergy 34:677–686. doi: 10.1016/j.biombioe.2010.01.011 Google Scholar
  118. Upreti BR, Horst D (2004) National renewable energy policy and local opposition in the UK: the failed development of a biomass electricity plant. Biomass Bioenergy 26:61–69. doi: 10.1016/S0961-9534(03)00099-0 Google Scholar
  119. Vande WI, Van Camp N, Van de Casteele L, Verheyen K, Lemeur R (2007) Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) I. Biomass production after 4 years of tree growth. Biomass Bioenergy 31:267–275. doi: 10.1016/j.biombioe.2007.01.019 Google Scholar
  120. Veiras X, Soto A (2011) La conflictividad de las plantaciones de eucalipto en España y Portugal. Análisis y propuestas para solucionar la conflictividad ambiental y social de las plantaciones de eucalipto en la península Ibérica. Greenpeace, MadridGoogle Scholar
  121. Verlinden MS, Broeckx LS, van den Bulcke J, van Acker J, Ceulemans R (2013) Comparative study of biomass determinants of 12 poplar (Populus) genotypes in a high-density short rotation culture. For Ecol Manag 307:101–111. doi: 10.1016/j.foreco.2013.06.062 Google Scholar
  122. Volk TA, Abrahamson LP, Nowak CA, Smart LB, Tharakan PJ, White EH (2006) The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenergy 30:715–727. doi: 10.1016/j.biombioe.2006.03.001 Google Scholar
  123. Wolf J, Bindraban PS, Luijten JC, Vleeshouwers LM (2003) Exploratory study on the land area required for global food supply and the potential global production of bioenergy. Agr Syst 76:841–861. doi: 10.1016/S0308-521X(02)00077-X Google Scholar
  124. Yin R, He Q (1997) The spatial and temporal effects of Paulownia intercropping: the case of northern China. Agrofor Syst 37:91–109. doi: 10.1023/A:1005837729528 Google Scholar
  125. Zhou ZC, Shangguan ZP (2005) Soil anti-scouribility enhanced by plant roots. J Integr Plant Biol 47:676–682. doi: 10.1111/j.1744-7909.2005.00067.x Google Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Carmen Rocío Rodríguez Pleguezuelo
    • 1
  • Víctor Hugo Durán Zuazo
    • 2
    Email author
  • Charles Bielders
    • 1
  • Juan Antonio Jiménez Bocanegra
    • 3
  • Francisco PereaTorres
    • 2
  • José Ramón Francia Martínez
    • 4
  1. 1.Earth and Life Institute—Environmental Sciences (ELI-e)Université Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.IFAPA Centro “Las Torres-Tomejil”Alcalá del RíoSpain
  3. 3.Sociedad Andaluza de Valorización de la BiomasaSevillaSpain
  4. 4.IFAPA Centro “Camino de Purchil”GranadaSpain

Personalised recommendations