Agronomy for Sustainable Development

, Volume 35, Issue 1, pp 1–25 | Cite as

Advanced methods of plant disease detection. A review

  • Federico MartinelliEmail author
  • Riccardo Scalenghe
  • Salvatore Davino
  • Stefano Panno
  • Giuseppe Scuderi
  • Paolo Ruisi
  • Paolo Villa
  • Daniela Stroppiana
  • Mirco Boschetti
  • Luiz R. Goulart
  • Cristina E. Davis
  • Abhaya M. Dandekar
Review Article


Plant diseases are responsible for major economic losses in the agricultural industry worldwide. Monitoring plant health and detecting pathogen early are essential to reduce disease spread and facilitate effective management practices. DNA-based and serological methods now provide essential tools for accurate plant disease diagnosis, in addition to the traditional visual scouting for symptoms. Although DNA-based and serological methods have revolutionized plant disease detection, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic diffusion. They need at least 1–2 days for sample harvest, processing, and analysis. Here, we describe modern methods based on nucleic acid and protein analysis. Then, we review innovative approaches currently under development. Our main findings are the following: (1) novel sensors based on the analysis of host responses, e.g., differential mobility spectrometer and lateral flow devices, deliver instantaneous results and can effectively detect early infections directly in the field; (2) biosensors based on phage display and biophotonics can also detect instantaneously infections although they can be integrated with other systems; and (3) remote sensing techniques coupled with spectroscopy-based methods allow high spatialization of results, these techniques may be very useful as a rapid preliminary identification of primary infections. We explain how these tools will help plant disease management and complement serological and DNA-based methods. While serological and PCR-based methods are the most available and effective to confirm disease diagnosis, volatile and biophotonic sensors provide instantaneous results and may be used to identify infections at asymptomatic stages. Remote sensing technologies will be extremely helpful to greatly spatialize diagnostic results. These innovative techniques represent unprecedented tools to render agriculture more sustainable and safe, avoiding expensive use of pesticides in crop protection.


DNA-based methods Immunological assays Spectroscopy Biophotonics Plant disease Remote sensing Volatile organic compounds Commercial kits 



Artificial neural networks


Absorbed photosynthetic active radiation


Amplified 16S ribosomal DNA restriction analysis


Airborne visible/infrared imaging spectrometer


Beet armyworms


Basic local alignment search tool


Complementary determining regions


Cucumber mosaic virus


Cooperative PCR




Differential mobility spectrometry


Nucleoside triphosphates containing deoxyribose


Double-stranded DNA


Enzyme-linked immunosorbent assay


Environmental mapping and analysis program


Earth observation


European and Mediterranean Plant Protection Organization


High field asymmetric waveform ion mobility spectrometry


Food and Agriculture Organization


Fluorescence in situ hybridization


Gas chromatography mass spectrometry


Independent-principal components analysis


Loop-mediated isothermal amplification


Leaf Area Index

Landsat TM

Earth Resources Technology Satellite Thematic Mapper


Lateral flow microarrays


Multiplex PCR


Multivariate data analysis


Nucleic acid sequence-based amplification


Near-infrared wavelength


Nuclear magnetic resonance


Nested PCR


Principal component analysis


Pulsed-field gel electrophoresis


Polymerase chain reaction


Plant disease detection


Potato leafroll virus


Plum pox potyvirus


PRecursore IperSpettrale della Missione Applicativa


Proton-transfer-reaction mass spectrometry


Random amplified polymorphic DNA


Repetitive-sequence PCR


Restriction fragment length polymorphism


Remote sensing


Radiative transfer modeling


Real-time PCR


Scattering by arbitrarily inclined leaves


Spectral angle mapper classification


Stir bar sorptive extraction


Single-chain variable fragment


Systematic evolution of ligands by exponential enrichment


Selected ion flow tube mass spectrometry


Spectral mixture analysis


Solid-phase microextraction


Single-stranded DNA


Single nucleotide polymophisms


Serologically specific electron microscopy


Single-stranded RNA


Short tandem repeats


Spectral vegetation indices


Support vector machine


Shortwave infrared wavelength


Thermal infrared wavelength




Tomato yellow leaf curl disease


Unmanned aerial vehicle


Vegetation indices


Visible wavelength


Volatile organic compounds



We are grateful to Chiara Nepi for providing iconographic materials. We thank Minghua Zhang and colleagues for permission to use their data in our Fig. 4 and Jorge Torres-Sánchez and colleagues for permission to use their picture in our Fig. 5. CED was supported by the California Citrus Research Board (CRB), the Industry-University Cooperative Research Program (UC Discovery), the Florida Citrus Production Advisory Council (FCPRAC), and the National Science Foundation (no. 1255915).



is a hyperspectral scanner that provides 128 bands across the reflective solar wavelength region of 0.45–2.5 μm with contiguous spectral coverage and bandwidths between 15 and 20 nm.


refers to a field of study in biology aiming at the collective characterization of pools of biological molecules that translate into the function of organisms.


integrate laboratory functions on a millimetric chip on a solid substrate (e.g., glass slide or silicon films) that assays large amounts of biological material using high-throughput screening miniaturized, multiplexed, and parallel processing and detection methods.


is a radiative transfer model based on the Allen’ plate model used by remote sensing techniques.


is an additive color model in which red, green, and blue light is added together in various ways to reproduce a broad array of colors.

SYBR® Green

is an asymmetrical cyanine dye used as a nucleic acid which absorbs blue light (λ max = 497 nm) and emits green light (λ max = 520 nm).


is used to address a specific object of a specific field of study in biology. It refers to the set of all RNA molecules produced in a population of cells. It differs from the exome, the sequences which when transcribed remain within the mature RNA after introns are removed by RNA splicing.


  1. Agati G, Foschi L, Grossi N, Guglielminetti L, Cerovic ZG, Volterrani M (2013) Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses. Eur J Agron 45:39–51. doi: 10.1016/j.eja.2012.10.011 Google Scholar
  2. Ahmed MU, Hossain MM, Tamiyaa E (2008) Electrochemical biosensors for medical and food applications. Electroanalysis 20:616–626. doi: 10.1002/elan.200704121 Google Scholar
  3. Aksenov A, WHK C, Zhao W, Bardaweel H, Martinelli F, Fiehn O, Dandekar AM, Davis CE (2012) Reagentless detection of citrus pathogens using differential mobility spectrometry. Citrograph 3:54–56Google Scholar
  4. Aksenov AA, Pasamontes A, Peirano DJ, Zhao W, Dandekar AM, Fiehn O, Eshani R, Davis CE (2014) Detection of Huanglongbing disease using differential mobility spectrometry. Anal Chem 86:2481–2488. doi: 10.1021/ac403469y PubMedGoogle Scholar
  5. Alarcon B, López MM, Cambra M, Gorris MT, Guerri J (1990) Differentiation of Erwinia carotovora subsp. carotovora and Erwinia carotovora subsp. atroseptica isolated from potato by Western blot and subsequent indirect ELISA. J Appl Biol 69:17–24. doi: 10.1111/j.1365-2672.1990.tb02906.x Google Scholar
  6. Anderson MC, Neale CMU, Li F, Norman JM, Kustas WP, Jayanthi H, Chavez J (2004) Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery. Remote Sens Envir 92:447–464. doi: 10.1016/j.rse.2004.03.019 Google Scholar
  7. Andris-Widhopf J, Rader C, Steinberger P, Fuller R, Barbas CF III (2000) Methods for the generation of chicken monoclonal antibody fragments by phage display. J Immunol Method 242:159–181. doi: 10.1016/S0022-1759(00)00221-0 Google Scholar
  8. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148. doi: 10.1021/ac00218a019 Google Scholar
  9. Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: ‘talking trees’ in the genomics era. Science 311:812–814. doi: 10.1126/science.1118446 PubMedGoogle Scholar
  10. Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep 11:737–747. doi: 10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4 Google Scholar
  11. Baltussen E, Cramers CA, Sandra PJF (2002) Sorptive sample preparation—a review. Anal Bioanal Chem 373:3–22. doi: 10.1007/s00216-002-1266-2 PubMedGoogle Scholar
  12. Barbas CF III, Burton DR, Scott JK, Silverman GJ (2001) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  13. Baret F, Houlès V, Guèrif M (2007) Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. J Exp Bot 58:869–880. doi: 10.1093/jxb/erl231 PubMedGoogle Scholar
  14. Bates SR, Baldwin DA, Channing A, Gifford LK, Hsu A, Lu P (2005) Cooperativity of paired oligonucleotide probes for microarray hybridization assays. Anal Biochem 342:59–68. doi: 10.1016/j.ab.2005.03.030 PubMedGoogle Scholar
  15. Bauriegel E, Giebel A, Geyer M, Schmidt U, Herppich WB (2011) Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput Electron Agric 75:304–312. doi: 10.1016/j.compag.2010.12.006 Google Scholar
  16. Berdugo CA, Zito R, Paulus S, Mahlein AK (2014) Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathol doi: 10.1111/ppa.12219 Google Scholar
  17. Blake RS, Monks PS, Ellis AM (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109:861–896. doi: 10.1021/cr800364q PubMedGoogle Scholar
  18. Blasco J, Aleixos N, Gómez J, Moltó E (2007) Citrus sorting by identification of the most common defects using multispectral computer vision. J Food Engin 83:384–393. doi: 10.1016/j.jfoodeng.2007.03.027 Google Scholar
  19. Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Ann Rev Cell Develop Biol 16:1–18. doi: 10.1146/annurev.cellbio.16.1.1 Google Scholar
  20. Bock CH, Parker PE, Cook AZ, Gottwald TR (2008) Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Dis 92:530–541. doi: 10.1094/PDIS-92-4-0530 Google Scholar
  21. Bock CH, Poole GH, Parker PE, Gottwald TR (2010) Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit Rev Plant Sci 29:59–107. doi: 10.1080/07352681003617285 Google Scholar
  22. Bravo C, Moshou D, West J, McCartney A, Ramon H (2003) Early disease detection in wheat fields using spectral reflectance. Biosys Eng 84:137–145. doi: 10.1016/S1537-5110(02)00269-6 Google Scholar
  23. Calderón R, Navas-Cortés JA, Lucena C, Zarco-Tejada PJ (2013) High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens Environ 139:231–245. doi: 10.1016/j.rse.2013.07.031 Google Scholar
  24. Camargo A, Smith JS (2009) Image pattern classification for the identification of disease causing agents in plants. Comput Electron Agric 66:121–125. doi: 10.1016/j.compag.2009.01.003 Google Scholar
  25. Cardoza YJ, Alborn HT, Tumlinson JH (2002) In vivo volatile emissions from peanuts plants induced by simultaneous fungal infection and insect damage. J Chem Ecol 28:161–173. doi: 10.1023/A:1013523104853 PubMedGoogle Scholar
  26. Cardoza YJ, Teal PEA, Tumlinson JH (2003) Effect of peanut plant fungal infection on oviposition preference by Spodoptera exigua and on host-searching behavior by Cotesia marginiventris. Environ Entomol 32:970–976. doi: 10.1603/0046-225X-32.5.970 Google Scholar
  27. Carter DJ, Cary RB (2007) Lateral flow microarrays: a novel platform for rapid nucleic acid detection based on miniaturized lateral flow chromatography. Nucleic Acids Res 35:e74. doi: 10.1093/nar/gkm269 PubMedCentralPubMedGoogle Scholar
  28. Caruso P, Gorris MT, Cambra M, Palomo JL, Collar J, López MM (2002) Enrichment double-antibody sandwich indirect enzyme-linked immunosorbent assay that uses a specific monoclonal antibody for sensitive detection of Ralstonia solanacearum in asymptomatic potato tubers. Appl Environ Microbiol 68:3634–3638. doi: 10.1128/AEM.68.7.3634-3638.2002 PubMedCentralPubMedGoogle Scholar
  29. Caruso P, Bertolini E, Cambra M, López MM (2003) A new and co-operational polymerase chain reaction (Co-PCR) for rapid detection of Ralstonia solanacearum in water. J Microbiol Method 55:257–272. doi: 10.1016/S0167-7012(03)00161-1 Google Scholar
  30. Chaerle L, Van Der Straeten D (2000) Imaging techniques and the early detection of plant stress. Trends Plant Sci 5:495–501. doi: 10.1016/S1360-1385(00)01781-7 PubMedGoogle Scholar
  31. Chaerle L, Van Caeneghem W, Messens E, Lambers H, Van Montagu M, Van Der Straeten D (1999) Presymptomatic visualization of plant–virus interactions by thermography. Nat Biotechnol 17:813–816. doi: 10.1038/11765 PubMedGoogle Scholar
  32. Chaerle L, Hulsen K, Hermans C, Strasser RJ, Valcke R, Höfte M, Van Der Straeten D (2003) Robotized time-lapse imaging to assess in-planta uptake of phenylurea herbicides and their microbial degradation. Physiol Plant 118:613–619. doi: 10.1034/j.1399-3054.2003.00143.x Google Scholar
  33. Chen B, Wang K, Li S, Wang J, Bai J, Xiao C, Lai J (2008) Spectrum characteristics of cotton canopy infected with Verticillium wilt and inversion of severity level. In: Li D (ed) Computer and computing technologies in agriculture, volume II. Springer, 259:1169–1180. doi: 10.1016/S1671-2927(08)60053-X
  34. Cheung W, Xu Y, Thomas CLP, Goodacre R (2009) Discrimination of bacteria using pyrolysis-gas chromatography-differential mobility spectrometry (Py-GC-DMS) and chemometrics. Analyst 134:557–563. doi: 10.1039/b812666f PubMedGoogle Scholar
  35. Choi YH, Tapias EC, Kim HK, Lefeber AW, Erkelens C, Verhoeven JTJ, Verpoorte R (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiol 135:2398–2410. doi: 10.1104/pp. 104.041012 PubMedCentralPubMedGoogle Scholar
  36. Cirvilleri G, Scuderi G, Bonaccorsi A, Scortichini M (2007a) Occurrence of Pseudomonas syringae pv. coryli on hazelnut orchards in Sicily, Italy and characterization by fluorescent amplified fragment length polymorphism. J Phytopathol 155:397–402. doi: 10.1111/j.1439-0434.2007.01249.x Google Scholar
  37. Cirvilleri G, Scuderi G, Catara V, Scortichini M (2007b) Typing of Pseudomonas syringae pv. pisi strains by fluorescent AFLP fingerprinting. J Plant Pathol 89:421–425. doi: 10.4454/jpp.v89i3.776 Google Scholar
  38. Clerc A, Manceau C, Nesme X (1998) Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genospecies III of Pseudomonas syringae. Appl Environ Microbiol 64:1180–1187PubMedCentralPubMedGoogle Scholar
  39. Compton J (1991) Nucleic acid sequence-based amplification. Nature 350:91–92. doi: 10.1038/350091a0 PubMedGoogle Scholar
  40. Costa G, Noferini M, Fiori G, Spinelli F (2007) Innovative application of non-destructive techniques for fruit quality and disease diagnosis. Acta Hortic 753:275Google Scholar
  41. Costa JM, Grant OM, Chaves MM (2013) Thermography to explore plant–environment interactions. J Exp Bot 64:3937–3949. doi: 10.1093/jxb/ert029 PubMedGoogle Scholar
  42. Daley PF (1995) Chlorophyll fluorescence analysis and imaging in plant stress and disease. Can J Plant Pathol 17:167–173. doi: 10.1080/07060669509500708 Google Scholar
  43. Damm A, Erler A, Hillen W, Meroni M, Schaepman ME, Verhoef W, Rascher U (2011) Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence. Remote Sens Environ 115:1882–1892. doi: 10.1016/j.rse.2011.03.011 Google Scholar
  44. Dandekar AM, Martinelli F, Davis CE, Bhushan A, Zhao W, Fiehn O, Skogerson K, Wohlgemuth G, D’Souza R, Roy S, Reagan RL, Lin D, Bruce Cary R, Pardington P, Gupta G (2010) Analysis of early host responses for asymptomatic disease detection and management of specialty crops. Crit Rev Immunol 30:277–289. doi: 10.1615/CritRevImmunol.v30.i3.50 PubMedGoogle Scholar
  45. D’Asaro F, Grillone G (2012) Empirical investigation of Curve Number method parameters in the Mediterranean area. J Hydr Eng 17:1141–1152. doi: 10.1061/(ASCE)HE.1943-5584.0000570 Google Scholar
  46. Davino S, Napoli C, Davino M, Accotto GP (2006) Spread of Tomato yellow leaf curl virus: partial displacement of another geminivirus originally present. Eur J Plant Pathol 114:293–299Google Scholar
  47. Davino S, Miozzi L, Panno S, Rubio L, Davino M, Accotto GP (2012) Recombination profiles between Tomato yellow leaf curl virus and tomato yellow leaf curl Sardinia virus in laboratory and field condition: evolutionary and taxonomic implications. J Gen Virol 93:2712–2717. doi: 10.1099/vir.0.045773-0 PubMedGoogle Scholar
  48. Dawkins R, Krebs JR (1979) Arms races between and within species. Proc Royal Soc Lond B 205:489–511. doi: 10.1098/rspb.1979.0081 Google Scholar
  49. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986. doi: 10.1038/nature03449 PubMedGoogle Scholar
  50. de Lacy Costello BPJ, Evans P, Ewen RJ, Gunson HE, Jones PRH, Ratcliffe NM, Spencer-Phillips PTN (2001) Gas chromatography-mass spectrometry analyse of volatile compounds from potato tubers inoculated with Phytohthora infestans or Fusarium coeruleum. Plant Pathol 50:489–496. doi: 10.1046/j.1365-3059.2001.00594.x Google Scholar
  51. De Jong S, van der Meer FD (2006) Remote sensing image analysis: including the spatial domain. Springer editions, DordrechtGoogle Scholar
  52. Delalieux S, Van Aardt JAN, Keulemans W, Schrevens E, Coppin P (2007) Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: non-parametric statistical approaches and physiological implications. Eur J Agron 27:130–143. doi: 10.1016/j.eja.2007.02.005 Google Scholar
  53. Delwiche SR, Kim MS (2000) Hyperspectral imaging for detection of scab in wheat. Biol Qual Prec Agric II, Proc SPIE 4203:13–20. doi: 10.1117/12.411752 Google Scholar
  54. Doleman BJ, Severin EJ, Lewis NS (1997) Trends in odor intensity for human and electronic noses: relative roles of odorant vapor pressure vs. molecularly specific odorant binding. PNAS 95:5442–5447. doi: 10.1073/pnas.95.10.5442 Google Scholar
  55. Ellington AD, Szostak J (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. doi: 10.1038/346818a0 PubMedGoogle Scholar
  56. Egerton FN (2012) History of Ecological Sciences. Part 44: Phytopathology during the 1800s. Bull Ecol Soc Am 93:303–339. doi: 10.1890/0012-9623-93.4.303 Google Scholar
  57. Fehsenfild FC, Ferguson EE, Schmeltekopf AL (1966) Thermal energy ion—neutral reaction rates. III. The measured rate constant for the reaction O+(4S)+CO2 (1Σ)→O2+(2Π)+CO (1Σ). J Chem Phys 44:3022–3024. doi: 10.1063/1.1727173 Google Scholar
  58. Fend R, Kolk A, Bessant C, Buijtels P, Klatser PR, Woodman AC (2006) Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum. J Clin Microb 44:2039–2045. doi: 10.1128/JCM.01591-05 Google Scholar
  59. Ferguson EE, Fehsenfeld FC, Schmeltekopf AL (1969) Flowing afterglow measurements of ion-neutral reactions. Adv At Mol Phys 5:1–56. doi: 10.1016/S0065-2199(08)60154-2 Google Scholar
  60. Franke J, Menz G (2007) Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agric 8:161–172Google Scholar
  61. Gardner JW, Bartlett PN (1994) A brief history of electronic noses. Sens Actuators B Chem 18:210–211. doi: 10.1016/0925-4005(94)87085-3 Google Scholar
  62. Gascoyne PRC, Vykoukal JV, Schwartz JA, Anderson TJ, Vykoukal DM, Current KW, McConaghy C, Becker FF, Andrews C (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4:299–309. doi: 10.1039/b404130e PubMedGoogle Scholar
  63. Grillone G, Agnese C, D’Asaro F (2012) Estimation of daily solar radiation from measured air temperature extremes in the mid-Mediterranean area. J Irr Drain Eng 138:939–947. doi: 10.1061/(ASCE)IR.1943-4774.0000480 Google Scholar
  64. Grillone G, Baiamonte G, D’Asaro F (2014) Empirical determination of the average annual runoff coefficient in the Mediterranean area. Am J Appl Sci 11:89–95. doi: 10.3844/ajassp.2014.89.95 Google Scholar
  65. Goulart LR, Vieira CU, Freschi AP, Capparelli FE, Fujimura PT, Almeida JF, Ferreira LF, Goulart IMB, Brito-Madurro AG, Madurro JM (2010) Biomarkers for serum diagnosis of infectious diseases and their potential application in novel sensor platforms. Crit Rev Immunol 30:201–222. doi: 10.1615/CritRevImmunol.v30.i2.70 PubMedGoogle Scholar
  66. Gowen AA, O’Donnell C, Cullen PJ, Downey G, Frias JM (2007) Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends Food Sci Tech 18:590–598. doi: 10.1016/j.tifs.2007.06.001 Google Scholar
  67. Graeff S, Link J, Claupein W (2006) Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. Central Eur J Biol 1:275–288. doi: 10.2478/s11535-006-0020-8 Google Scholar
  68. Grisham MP, Johnson RM, Zimba PV (2010) Detecting sugarcane yellow leaf virus infection in asymptomatic leaves with hyperspectral remote sensing and associated leaf pigment changes. J Virol Method 167:140–145. doi: 10.1016/j.jviromet.2010.03.024 Google Scholar
  69. Grothues D, Rudolph K (1991) Macrorestriction analysis of plant pathogenic Pseudomonas species and pathovars. FEMS Microbiol 79:83–88. doi: 10.1016/0378-1097(91)90532-F Google Scholar
  70. Hadjiloucas S, Walker GC, Bowen JW, Zafiropoulos A (2009) Propagation of errors from a null balance terahertz reflectometer to a sample’s relative water content. J Phys Sensor Appl 178:1–5. doi: 10.1088/1742-6596/178/1/012012 Google Scholar
  71. Hampton R, Ball E, De Boer S (1990) Serological methods for detection and identification of viral and bacterial plant pathogens. A laboratory manual. APS Press, St. PaulGoogle Scholar
  72. Harper K, Kerschbaumer RJ, Ziegler A, Macintosh SM, Cowan GH, Himmler G, Mayo MA, Torrance L (1997) A scFv-alkaline phosphatase fusion protein which detects potato leafroll luteovirus in plant extracts by ELISA. J Virol Method 63:237–242. doi: 10.1016/S0166-0934(96)02133-7 Google Scholar
  73. Hendriks MMWB, van Eeuwijk FA, Jellema RH, Westerhuis JA, Reijmers TH, Hoefsloot HCJ, Smilde AK (2011) Data-processing strategies for metabolomics studies. Trends Anal Chem 30:1685–1698. doi: 10.1016/j.trac.2011.04.019 Google Scholar
  74. Hillnhütter C, Mahlein AK, Sikora RA, Oerke EC (2011) Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields. Field Crop Res 122:70–77. doi: 10.1016/j.fcr.2011.02.007 Google Scholar
  75. Holzloehner P, Schliebs E, Maier N, Füner J, Micheel B, Heilmann K (2013) Production of monoclonal camelid antibodies by means of hybridoma technology. J Immunol 190:135.14Google Scholar
  76. Huang W, Lamb DW, Niu Z, Zhang Y, Liu L, Wang J (2007) Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agric 8:187–197. doi: 10.1007/s11119-007-9038-9 Google Scholar
  77. Huang J, Liao H, Zhu Y, Sun J, Sun Q, Liu X (2012) Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis). Comput Electron Agric 82:100–107. doi: 10.1016/j.compag.2012.01.002 Google Scholar
  78. Hufkens K, Bogaert J, Dong QH, Lu L, Huang CL, Ma MG, Che T, Li X, Veroustraete F, Ceulemans R (2008) Impacts and uncertainties of upscaling of remote-sensing data validation for a semi-arid woodland. J Arid Environ 72:1490–1505. doi: 10.1016/j.jaridenv.2008.02.012 Google Scholar
  79. Ibanez AM, Martinelli F, Uratsu SL, Vo A, Tinoco MA, Phu ML, Chen Y, Rocke DM, Dandekar AM (2014) Transcriptome and metabolome analysis of Citrus fruit to elucidate puffing disorder. Plant Sci 217:87–98. doi: 10.1016/j.plantsci.2013.12.003 PubMedGoogle Scholar
  80. Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ 34:75–91Google Scholar
  81. Jacquemoud S, Ustin SL (2001) Leaf optical properties: a state of the art. In: Proc Int Symp Phys Meas Sign Rem Sens, pp 223–232Google Scholar
  82. Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada PJ, Asner GP, François C, Ustin SL (2009) PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens Environ 113:S56–S66. doi: 10.1016/j.rse.2008.01.026 Google Scholar
  83. Jansen RMC, Hofstee JW, Wildt J, Verstappen FWA, Bouwmeester HJ, van Henten EJ (2009) Induced plant volatiles allow sensitive monitoring of plant health status in greenhouses. Plant Signal Behav 4:824–829. doi: 10.4161/psb.4.9.9431 PubMedCentralPubMedGoogle Scholar
  84. Jansen RMC, Wildt J, Kappers IF, Bouwmeester HJ, Hofstee JW, van Henten EJ (2011) Detection of diseased plants by analysis of volatile organic compound emission. Ann Rev Phytopathol 49:157–174. doi: 10.1146/annurev-phyto-072910-095227 Google Scholar
  85. Johnson DA, Alldredge JR, Hamm PB, Frazier BE (2003) Aerial photography used for spatial pattern analysis of late blight infection in irrigated potato circles. Phytopathology 93:805–812. doi: 10.1094/PHYTO.2003.93.7.805 PubMedGoogle Scholar
  86. Klerks MM, Leone G, Lindner JL, Schoen CD, van den Heuvel JFJM (2001) Rapid and sensitive detection of Apple stem pitting virus in apple trees through RNA amplification and probing with fluorescent molecular beacons. Phytopathology 91:1085–1091. doi: 10.1094/PHYTO.2001.91.11.1085 PubMedGoogle Scholar
  87. Krebs MD, Cohen SJ, Lowzo J, Kang J, Tingley RD, Davis CE (2006) Two-dimensional alignment of differential mobility spectrometer data. Sensors and Actuators B-Chemical 119:475–482Google Scholar
  88. Laothawornkitkul J, Moore JP, Taylor JE, Malcom G, Tim D, Hewitt CN, Paul ND (2008) Discrimination of plant volatile signatures by an electronic nose: a potential technology for plant pest and disease monitoring. Environ Sci Tech 42:8433–8439. doi: 10.1021/es801738s Google Scholar
  89. Lichtenthaler HK, Lang M, Sowinska M, Heisel F, Miehe JA (1996) Detection of vegetation stress via a new high resolution fluorescence imaging system. J Plant Physiol 148:599–612. doi: 10.1016/S0176-1617(96)80081-2 Google Scholar
  90. Lin CH, Tsai CH, Pan CW, Fu LM (2007) Rapid circular microfluidic mixer utilizing unbalanced driving force. Biomed Microdevice 9:43–50. doi: 10.1007/s10544-006-9009-3 Google Scholar
  91. Lins EC, Belasque J Jr, Marcassa LG (2009) Detection of Citrus canker in citrus plants using laser induced fluorescence spectroscopy. Precision Agric 10:319–330. doi: 10.1007/s11119-009-9124-2
  92. Little EL, Bostock RM, Kirkpatrick BC (1998) Genetic characterization of Pseudomonas syringae pv. syringae strains from stone fruit in California. Appl Environ Microbiol 64:3818–3823, Accessed June 2014PubMedCentralPubMedGoogle Scholar
  93. Liu CX, Lagae L, Borghs G (2007) Manipulation of magnetic particles on chip by magnetophoretic actuation and dielectrophoretic levitation. Appl Phys Lett 90:184109. doi: 10.1063/1.2736278 Google Scholar
  94. Lorenzen B, Jensen A (1991) Spectral properties of a barley canopy in relation to the psectral properties of single leaves and the soil. Remote Sens Environ 37:23–34. doi: 10.1016/0034-4257(91)90047-A Google Scholar
  95. López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Mol Biol 11:13–46, Accessed June 2014Google Scholar
  96. Louws FJ, Rademaker JLW, Brujin FJ (1999) The three Ds of PCR-based genomic analysis of phytobacteria: diversity, detection, and disease diagnosis. Ann Rev Phytopathol 37:81–125. doi: 10.1146/annurev.phyto.37.1.81 Google Scholar
  97. Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors-principles and applications to clinical chemistry. Clin Chim Acta 314:1–26. doi: 10.1016/S0009-8981(01)00629-5 PubMedGoogle Scholar
  98. Lytovchenko A, Beleggia R, Schauer N, Isaacsin T, Leuendorf JE, Hellmann H, Rose JKC, Fernie A (2009) Application of GC-MS for the detection of lipophilic compounds in diverse plant tissues. BMC Plant Meth 5:1–11. doi: 10.1186/1746-4811-5-4 Google Scholar
  99. Manceau C, Brin C (2003). Pathovars of Pseudomonas syringae are structured in genetic populations allowing the selection of specific markers for their detection in plant samples. In: Iacobellis NS et al. (eds) Pseudomonas syringae and related pathogens. Kluwer, pp. 503–512Google Scholar
  100. Mahlein AK, Oerke EC, Steiner U, Dehne HW (2012a) Recent advances in sensing plant diseases for precision crop protection. Eur J Plant Pathol 133:197–209. doi: 10.1007/s10658-011-9878-z Google Scholar
  101. Mahlein AK, Steiner U, Hillnhütter C, Dehne HW, Oerke EC (2012b) Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Meth 8:3. doi: 10.1186/1746-4811-8-3 Google Scholar
  102. Mahlein AK, Rumpf T, Welke P, Dehne HW, Plümer L, Steiner U, Oerke EC (2013) Development of spectral indices for detecting and identifying plant diseases. Remote Sens Environ 128:21–30. doi: 10.1016/j.rse.2012.09.019 Google Scholar
  103. Malthus TJ, Madeira AC (1993) High resolution spectroradiometry: spectral reflectance of field bean leaves infected by Botrytis fabae. Remote Sens Environ 45:107–116Google Scholar
  104. Marco S, Gutiérrez-Gálvez A (2012) Signal and data processing for machine olfaction and chemical sensing: a review. IEEE Sens J 12:469–479. doi: 10.1109/JSEN.2012.2192920 Google Scholar
  105. Martinelli F, Basile B, Morelli G, D’Andria R, Tonutti P (2012a) Effects of irrigation on fruit ripening behavior and metabolic changes in olive. Sci Hortic 144:201–207. doi: 10.1016/j.scienta.2012.07.012 Google Scholar
  106. Martinelli F, Uratsu SL, Albrecht U, Reagan RL, Phu ML et al. (2012b) Transcriptome profiling of citrus fruit response to Huanglongbing disease. PLoS One 7:e38039. doi: 10.1371/journal.pone.0038039 PubMedCentralPubMedGoogle Scholar
  107. Martinelli F, Reagan RL, Uratsu SL, Phu ML, Albrecht U et al. (2013a) Gene regulatory networks elucidating Huanglongbing disease mechanisms. PLoS One 8:e74256. doi: 10.1371/journal.pone.0074256 PubMedCentralPubMedGoogle Scholar
  108. Martinelli F, Remorini D, Saia S, Massai R, Tonutti P (2013b) Metabolic profiling of ripe olive fruit in response to moderate water stress. Sci Hortic 52–58. doi: 10.1016/j.scienta.2013.04.039
  109. Martinelli F, Scalenghe R, Giovino A, Pasquale M, Aksenov AA, Pasamontes A, Peirano DJ, Davis CE, Dandekar AM (2014) Proposal of a Citrus translational genomic approach for early and infield detection of Flavescence dorée in Vitis. Plant Biosyst. doi: 10.1080/11263504.2014.908976 Google Scholar
  110. Mauck KE, De Moraes CM, Mescher MC (2010) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. PNAS 23:3600–3605. doi: 10.1073/pnas.0907191107 Google Scholar
  111. Meroni M, Rossini M, Colombo R (2010) Characterization of leaf physiology using reflectance and fluorescence hyperspectral measurements. In: Maselli F, Menenti M, Brivio PA (eds) Optical observation of vegetation properties and characteristics. Research Signpost, Trivandrum, pp 165–187Google Scholar
  112. Mewes T, Franke J, Menz G (2011) Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection. Precision Agric 12:795–812. doi: 10.1007/s11119-011-9222-9 Google Scholar
  113. Minsavage GV, Thompson CM, Hopkins DL, Leite RMVBC, Stall RE (1994) Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. Phytopathology 84:456–461, Accessed June 2014Google Scholar
  114. Mirik M, Michels GJ Jr, Kassymzhanova-Mirik S, Elliott NC, Catana V, Jones DB, Bowling R (2006) Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat. Comput Electron Agric 51:86–98. doi: 10.1016/j.compag.2005.11.004 Google Scholar
  115. Mirik M, Jones DC, Price JA, Workneh F, Ansley RJ, Rush CM (2011) Satellite remote sensing of wheat infected by wheat streak mosaic virus. Plant Dis 95:4–12. doi: 10.1094/PDIS-04-10-0256 Google Scholar
  116. Mirik M, Ansley RJ, Price JA, Workneh F, Rush CM (2013) Remote monitoring of wheat streak mosaic progression using sub-pixel classification of Landsat 5 TM imagery for site specific disease management in winter wheat. Adv Remote Sens 2:16–28. doi: 10.3390/rs5020612 Google Scholar
  117. Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289:150–154. doi: 10.1006/bbrc.2001.5921 PubMedGoogle Scholar
  118. Morris T, Robertson B, Gallagher M (1996) Rapid reverse transcription-PCR detection of hepatitis C virus RNA in serum by using the TaqMan fluorogenic detection system. J Clin Microbiol 34:2933–2936, Accessed on June 2014PubMedCentralPubMedGoogle Scholar
  119. Moshou D, Bravo C, West J, Wahlen S, McCartney A, Ramon H (2004) Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Comput Electron Agric 44:173–188. doi: 10.1016/j.compag.2004.04.003 Google Scholar
  120. Moshou D, Bravo C, Oberti R, West J, Bodria L, McCartney A, Ramon H (2005) Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real Time Imag J 11:75–83. doi: 10.1016/j.rti.2005.03.003 Google Scholar
  121. Moshou D, Gravalos I, Bravo DKC, Oberti R, West JS, Ramon H (2012) Multisensor fusion of remote sensing data for crop disease detection. In: Thakur JK, Singh SK, Ramanathan A, Prasad MBK, Gossel W (eds) Geospatial techniques for managing environmental resources. Springer, pp 201–219Google Scholar
  122. Mottram R, DeJager JM, Duckworth JR (1983) Evaluation of a water stress index for maize using an infra-red thermometer. Crop Prod 12:26–28Google Scholar
  123. Mumford R, Boonham N, Tomlinson J, Barker I (2006) Advances in molecular phytodiagnostics—new solutions for old problems. Eur J Plant Pathol 116:1–19. doi: 10.1007/s10658-006-9037-0 Google Scholar
  124. Mundt CC, Sackett KE, Wallace LRD, Cowger C, Dudley JP (2009) Long-distance dispersal and accelerating waves of disease: empirical relationships. Am Nat 173:456–466. doi: 10.1086/597220 PubMedGoogle Scholar
  125. Munkacsi AB, Stoxen S, May G (2007) Domestication of maize, sorghum and sugarcane did not drive the divergence of their smut pathogens. Evolution 61:388–403. doi: 10.1111/j.1558-5646.2007.00036.x PubMedGoogle Scholar
  126. Naidu RA, Perry EM, Pierce FJ, Mekuria T (2009) The potential of spectral reflectance technique for the detection of grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Comput Electron Agric 66:38–45. doi: 10.1016/j.compag.2008.11.007 Google Scholar
  127. Natali L, Giordani T, Lercari B, Maestrini P, Cozza R, Pangaro T, Vernieri P, Martinelli F, Cavallini A (2007) Light induces expression of a dehydrin-encoding gene during seedling de-etiolation in sunflower (Helianthus annuus L.). J Plant Physiol 164:263–273. doi: 10.1016/j.jplph.2006.01.015 PubMedGoogle Scholar
  128. Nilsson HE (1995) Remote sensing and image analysis in plant pathology. Ann Rev Phytopthol 33:489–527. doi: 10.1146/ Google Scholar
  129. Nolasco G, Sequeira Z, Soares C, Mansinho A, Bailey AM, Niblett CL (2002) Asymmetric PCR ELISA: increased sensitivity and reduced costs for the detection of plant viral nucleic acids. Eur J Plant Pathol 108:293–298. doi: 10.1016/j.jviromet.2008.09.030 Google Scholar
  130. Nutter FW Jr (1989) Detection and measurement of plant disease gradients in peanut with a multispectral radiometer. Phytopathology 79:958–963, Accessed on April 2014Google Scholar
  131. Nutter FW Jr, Schultz PM (1995) Improving the accuracy and precision of disease assessments: selection of methods and use of computer-aided training programs. Can J Plant Pathol 17:174–184. doi: 10.1080/07060669509500709 Google Scholar
  132. Oerke EC, Steiner U, Dehne HW, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57:2121–2132. doi: 10.1093/jxb/erj170 PubMedGoogle Scholar
  133. Okamoto H, Murata T, Kataoka T, Hata SI (2007) Plant classification for weed detection using hyperspectral imaging with wavelet analysis. Weed Biol Manage 7:31–37. doi: 10.1111/j.1445-6664.2006.00234.x Google Scholar
  134. Olmos A, Cambra M, Dasi MA, Candresse T, Esteban O, Gorris MT, Asensio M (1997) Simultaneous detection and typing of Plum pox potyvirus (PPV) isolates by heminested-PCR and PCR-ELISA. J Virol Meth 68:127–137. doi: 10.1016/S0166-0934(97)00120-1 Google Scholar
  135. Olmos A, Bertolini E, Gil M, Cambra M (2005) Real-time assay for quantitative detection of non persistently transmitted Plum pox virus RNA targets in a single aphids. J Virol Meth 128:151–155. doi: 10.1016/j.jviromet.2005.05.011 Google Scholar
  136. Omasa K (1990) Image instrumentation methods of plant analysis. In: Liskens HF, Jackson JF (eds) Modern methods of plant analysis. Springer-Verlag, Berlin, pp 203–243Google Scholar
  137. Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31:169–217. doi: 10.1016/0161-5890(94)90001-9 PubMedGoogle Scholar
  138. Panigada C, Rossini M, Meroni M, Cilia C, Busetto L, Amaducci S, Boschetti M, Cogliati S, Picchi V, Pinto F, Marchesi A, Colombo R (2014) Fluorescence, PRI and canopy temperature for water stress detection in cereal crops. Int J Appl Earth Obs 30:167–178. doi: 10.1016/j.jag.2014.02.002 Google Scholar
  139. Panno S, Ferriol I, Rangel E, Olmos A, Han C-G, Martinelli F, Rubio L, Davino S (2014) Detection and identification of Fabavirus species by one-step RT-PCR and multiplex RT-PCR. J Virol Meth 197:77–82. doi: 10.1016/j.jviromet.2013.12.002 Google Scholar
  140. Panno S, Davino S, Rubio L, Rangel EA, Davino M, Garcia-Hernandez J, Olmos A (2012) Simultaneous detection of the seven main tomato-infecting RNA viruses by two multiplex reverse transcription polymerase chain reactions. J Virol Meth 186:152–156. doi: 10.1016/j.jviromet.2012.08.003 Google Scholar
  141. Pawliszyn J (1997) Solid phase microextraction—theory and practice. Wiley-VCH, WeinheimGoogle Scholar
  142. Peterson RB, Aylor DE (1995) Chlorophyll fluorescence induction in leaves of Phaseolus vulgaris infected with bean rust (Uromyces appendiculatus). Plant Physiol 108:163–171. doi: 10.1104/pp. 108.1.163 PubMedCentralPubMedGoogle Scholar
  143. Pinter PJ, Stanghellini ME, Reginato RJ, Idso SB, Jenkins AD, Jackson RD (1979) Remote detection of biological stresses in plants with infrared thermometry. Science 205:585–587. doi: 10.1126/science.205.4406.585 PubMedGoogle Scholar
  144. Polischuk VP, Shadchina TM, Kompanetz TI, BI G, Sozinov AL (1997) Changes in reflectance spectrum characteristic of Nicotiana debneyi plant under the influence of viral infection. Arch Phytopathol Plant Prot 31:115–119Google Scholar
  145. Prabhakar M, Prasad YG, Thirupathi M, Sreedevi G, Dharajothi B, Venkateswarlu B (2011) Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Comput Electron Agric 79:189–198. doi: 10.1016/j.compag.2011.09.012 Google Scholar
  146. Prabhakar M, Prasad YG, Rao MN (2012) Remote sensing of biotic stress in crop plants and its applications for pest management. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, pp 517–545Google Scholar
  147. Pradhanang PM, Elphinstone JG, Fox RTV (2000) Sensitive detection of Ralstonia solanacearum in soil: a comparison of different detection techniques. Plant Pathol 49:414–422. doi: 10.1046/j.1365-3059.2000.00481.x Google Scholar
  148. Purcell DE, O’Shea MG, Johnson RA, Kokot S (2009) Near-infrared spectroscopy for the prediction of disease ratings for Fiji leaf gall in sugarcane clones. Appl Spectr 63:450–457. doi: 10.1366/000370209787944370 Google Scholar
  149. Rader C, Barbas CF III (1997) Phage display of combinatorial antibody libraries. Curr Opin Biotechnol 8:503–508. doi: 10.1016/S0958-1669(97)80075-4 PubMedGoogle Scholar
  150. Reynolds GJ, Windels CE, MacRae IV, Laguette S (2012) Remote sensing for assessing Rhizoctonia crown and root rot severity in sugar beet. Plant Dis 96:497–505. doi: 10.1094/PDIS-11-10-0831 Google Scholar
  151. Rizzini FM, Bonghi C, Chkaiban L, Martinelli F, Tonutti P (2010) Effects of postharvest partial dehydration and prolonged treatments with ethylene on transcript profiling in skins of wine grape berries. Acta Hortic 877:1099–1104Google Scholar
  152. Robison BJ (1995) Use of commercially available ELISA kits for detection of foodborne pathogens. In: Howard J, Whitcombe DM (eds) Diagnostic bacteriology protocols. Humana Press, pp 123–132. doi: 10.1385/0-89603-297-3:123
  153. Rodriguez-Làzaro D, Hernàndez M, D’Agostino M, Cook N (2006) Application of nucleic acid sequence-based amplification for the detection of viable foodborne pathogens: progress and challenges. J Rapid Meth Aut Mic 14:218–236. doi: 10.1111/j.1745-4581.2006.00048.x Google Scholar
  154. Rumpf T, Mahlein AK, Steiner U, Oerke EC, Dehne HW, Plümer L (2010) Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput Electron Agric 74:91–99. doi: 10.1016/j.compag.2010.06.009 Google Scholar
  155. Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13. doi: 10.1016/j.compag.2010.02.007 Google Scholar
  156. Schaad NW, Song W, Hutcheson S, Dane F (2001) Gene tagging systems for polymerase chain reaction based monitoring of bacteria released for biological control of weeds. Can J Plant Pathol 23:36–41. doi: 10.1080/07060660109506906 Google Scholar
  157. Schaad NW, Frederick RD (2002) Real-time PCR and its application for rapid plant disease diagnostics. Can J Plant Pathol 24:250–258. doi: 10.1080/07060660209507006 Google Scholar
  158. Schaad NW, Frederick RD, Shaw J, Schneider WL, Hickson R, Petrillo MD, Luster DG (2003) Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Ann Rev Phytopathol 41:305–324. doi: 10.1146/annurev.phyto.41.052002.095435 Google Scholar
  159. Scholz BK, Jakobek JL, Lindgren PB (1994) Restriction fragment length polymorphism evidence for genetic homology within a pathovar of Pseudomonas syringae. Appl Environ Microbiol 60:1093–1100, Accessed Apr 2014PubMedCentralPubMedGoogle Scholar
  160. Scortichini M, Marchesi U, Rossi MP, Di Prospero P (2001) Bacteria associated with hazelnut (Corylus avellana L.) decline are of two groups: Pseudomonas avellanae and strains resembling P. syringae pv. syringae. Applied Appl Environ Microbiol 68:476–484. doi: 10.1128/AEM.68.2.476-484.2002 Google Scholar
  161. Scuderi G, Golmohammadi M, Cubero J, López MM, Cirvilleri G, Llop P (2010) Development of a simplified NASBA protocol for detecting viable cells of the citrus pathogen Xanthomonas citri subsp. citri under different treatments. Plant Pathol 59:764–772. doi: 10.1111/j.1365-3059.2010.02305.x Google Scholar
  162. Seiffert U, Schweizer P (2005) A pattern recognition tool for quantitative analysis of in planta hyphal growth of powdery mildew fungi. Mol Plant Microbe Interact 18:906–912. doi: 10.1094/MPMI-18-0906 PubMedGoogle Scholar
  163. Shnaydeman M, Mansfield B, Yip P, Clark HA, Krebs MD, Cohen SJ et al. (2005) Species-species bacteria identification using differential mobility spectrometry and bioinformatics pattern recognition. Anal Chem 77:5930–5937. doi: 10.1021/ac050348i Google Scholar
  164. Sighicelli M, Colao F, Lai A, Patsaeva S (2009) Monitoring post-harvest orange fruit disease by fluorescence and reflectance hyperspectral imaging. Acta Hort 817:277–284Google Scholar
  165. Simmonds P, Zhang LQ, Watson HG, Rebus S, Ferguson ED, Balfe P et al. (1990) Hepatitis C quantification and sequencing in blood products, haemophiliacs, and drug users. Lancet 336:1469–1472. doi: 10.1016/0140-6736(90)93179-S PubMedGoogle Scholar
  166. Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F (2000) Maskless fabrication of lightdirected oligonucleotide microarrays using a digital micromirror array. Nat Biotechnol 17:974–978. doi: 10.1038/13664 Google Scholar
  167. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317. doi: 10.1126/science.4001944 PubMedGoogle Scholar
  168. Smith D, Spanel P (2005) Selected ion flow tube mass spectrometry (SIFT-MS) for on line trace gas analysis. Mass Spectrom Rev 24:661–700. doi: 10.1002/mas.20033 PubMedGoogle Scholar
  169. Smith SE, Dickson S (1991) Quantification of active vesicular-arbuscular mycorrhizal infection using image analysis and other techniques. Aust J Plant Physiol 18:637–648. doi: 10.1071/PP9910637 Google Scholar
  170. Spanel P, Rolfe P, Rajan B, Smith D (1996) The selected ion flow tube (SIFT) a novel technique for biological monitoring. Ann Occup Hyg 40:615–626. doi: 10.1016/S0003-4878(96)00028-2 PubMedGoogle Scholar
  171. Stilwell AR, Hein GL, Zygielbaum AI, Rundquist DC (2013) Proximal sensing to detect symptoms associated with wheat curl mite-vectored viruses. Intern J Remote Sens 34:4951–4966. doi: 10.1080/01431161.2013.783945 Google Scholar
  172. Szymańska E, Saccenti E, Smilde AK, Westerhuis JA (2012) Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 8:3–16. doi: 10.1007/s11306-011-0330-3 PubMedCentralPubMedGoogle Scholar
  173. Taylor MT, Belgrader PB, Furman J, Pourahmadi F, Kovacs GTA, Northrup MA (2001) Lysing bacterial spores by sonication through a flexible interface in a microfluidics system. Anal Chem 73:492–496. doi: 10.1021/ac000779v PubMedGoogle Scholar
  174. Thelwell N, Millington S, Solinas A, Booth J, Brown T (2000) Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res 28:3752–3761. doi: 10.1093/nar/28.19.3752 PubMedCentralPubMedGoogle Scholar
  175. Tomlinson JA, Barker I, Boonham N (2007) Faster, simpler, more-specific methods for improved molecular detection of Phytophthora ramorum in the field. Appl Environ Microbiol 73:4040–4047. doi: 10.1128/AEM.00161-07 PubMedCentralPubMedGoogle Scholar
  176. Torres-Sánchez J, López-Granados F, de Castro-Megías AI, Peña-Barragán JM (2013) Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PLoS One 8(3):e58210. doi: 10.1371/journal.pone.0058210 PubMedCentralPubMedGoogle Scholar
  177. Tosetti R, Martinelli F, Tonutti P (2012) Metabolomics approach to studying minimally processed peach (Prunus persica) fruit. Acta Hortic 934:1017–1022Google Scholar
  178. Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabolomics. J Prot Res 6:469–479. doi: 10.1021/pr060594q Google Scholar
  179. van Doorn R, Szemes M, Bonants P, Kowalchuk GA, Salles JF, Ortenberg E, Schoen CD (2007) Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on open arrays. BMC Genom 14:276. doi: 10.1186/1471-2164-8-276 Google Scholar
  180. Van Vuurde JW, Ruissen MA, Vruggink H (1987) Principles and prospects of new serological techniques including immunosorbent immunofluorescence, immunoaffinity isolation and immunosorbent enrichment for sensitive detection of phytopathogenic bacteria. In: Civerolo EL, Collmer A, Davis RE, Gillaspie AG (eds) Plant Pathogenic Bacteria. Curr Plant Sci Biotech Agric 4:835–842Google Scholar
  181. Varga A, James D (2006) Use of reverse transcription loop-mediated isothermal amplification for the detection of Plum pox virus. J Virol Method 138:184–190. doi: 10.1016/j.jviromet.2006.08.014 Google Scholar
  182. Verhoef W (1984) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ 16:125–141. doi: 10.1016/0034-4257(84)90057-9 Google Scholar
  183. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi: 10.1093/nar/23.21.4407 PubMedCentralPubMedGoogle Scholar
  184. Wang H, Guo J, Ma Z (2012) Monitoring wheat stripe rust using remote sensing technologies in China. In: Li D, Chen Y (eds) Computer and computing technologies in agriculture V. Springer, pp 163–175Google Scholar
  185. West JS, Bravo C, Oberti R, Lemaire D, Moshou D, McCartney HA (2003) The potential of optical canopy measurement for targeted control of field crop diseases. Ann Rev Phytopathol 41:593–614Google Scholar
  186. Woodcock CE, Strahler AH (1987) The factor of scale in remote sensing. Remote Sens Environ 21:311–332. doi: 10.1016/0034-4257(87)90015-0 Google Scholar
  187. Zhao W, Bhushan A, Simon M, Santamaria A, Davis CE (2008) Machine learning: a crucial tool for developing sensors. Algorithms 1:130–152PubMedCentralPubMedGoogle Scholar
  188. Zhao W, Davis CE (2009) Swarm intelligence based wavelet coefficient feature selection for mass spectral classification: an application to proteomics data. (2009). Anal Chim Acta 651:15–23PubMedCentralPubMedGoogle Scholar
  189. Yang CM, Cheng CH, Chen RK (2007) Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Sci 47:329–335. doi: 10.2135/cropsci2006.05.0335 Google Scholar
  190. Yang W, Chen J, Chen G, Wang S, Fu F (2013) The early diagnosis and fast detection of blast fungus, Magnaporthe grisea, in rice plant by using its chitinase as biochemical marker and a rice cDNA encoding mannose-binding lectin as recognition probe. Biosens Bioelectron 41:820–826. doi: 10.1016/j.bios.2012.10.032 PubMedGoogle Scholar
  191. Yuan L, Huang Y, Loraamm RW, Nie C, Wang J, Zhang J (2014) Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crop Res 156:199–207. doi: 10.1016/j.fcr.2013.11.012 Google Scholar
  192. Zarco-Tejada PJ, Miller JR, Morales A, Berjón A, Agüera J (2004) Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens Environ 90:463–476. doi: 10.1016/j.rse.2004.01.017 Google Scholar
  193. Zhang Z, Yang MJ, Pawliszyn J (1994) Solid-phase micro-extraction. Anal Chem 66:844–853. doi: 10.1021/ac00089a716 Google Scholar
  194. Zhang M, Qin Z, Liu X, Ustin SL (2003) Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Intern J Appl Earth Observ Geoinf 4:295–310. doi: 10.1016/S0303-2434(03)00008-4 Google Scholar
  195. Zhang J, Pu R, Loraamm RW, Yang G, Wang J (2014) Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat. Comput Electron Agr 100:79–87. doi: 10.1016/j.compag.2013.11.001 Google Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Federico Martinelli
    • 1
    • 2
  • Riccardo Scalenghe
    • 1
  • Salvatore Davino
    • 1
    • 2
  • Stefano Panno
    • 2
  • Giuseppe Scuderi
    • 2
    • 3
  • Paolo Ruisi
    • 1
  • Paolo Villa
    • 4
  • Daniela Stroppiana
    • 4
  • Mirco Boschetti
    • 4
  • Luiz R. Goulart
    • 5
  • Cristina E. Davis
    • 6
  • Abhaya M. Dandekar
    • 7
  1. 1.Department of Agricultural and Forest SciencesUniversity of PalermoPalermoItaly
  2. 2.I.E.ME.S.T. Istituto Euro Mediterraneo di Scienza e TecnologiaPalermoItaly
  3. 3.Department of Agri-food and Environmental Systems ManagementUniversity of CataniaCataniaItaly
  4. 4.Institute for Electromagnetic Sensing of the EnvironmentNational Research Council (IREA-CNR)MilanoItaly
  5. 5.Laboratory of Nanobiotechnology, Institute of Genetics and BiochemistryUniversidade Federal de UberlandiaUberlandiaBrazil
  6. 6.Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaDavisUSA
  7. 7.Department of Plant SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations