Agronomy for Sustainable Development

, Volume 34, Issue 4, pp 737–752 | Cite as

Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review

  • Diby PaulEmail author
  • Harshad Lade
Review Article


Saline soils are a major issue for agriculture because salt turns agronomically useful lands into unproductive areas. The United Nations Environment Program estimates that approximately 20 % of agricultural land and 50 % of cropland in the world is salt-stressed. Soil salinisation is reducing the area that can be used for agriculture by 1–2 % every year, hitting hardest in the arid and semi-arid regions. Salinity decreases the yield of many crops because salt inhibits plant photosynthesis, protein synthesis and lipid metabolism. Plant-growth-promoting rhizobacteria (PGPR), beneficial bacteria that live in the plant root zone named the rhizosphere, is one of the solutions to solve this issue. Indeed rhizobacteria counteract osmotic stress and help plant growth. This article reviews the benefits of plant-growth-promoting rhizobacteria for plants growing in saline soils. The major points are (1) plants treated with rhizobacteria have better root and shoot growth, nutrient uptake, hydration, chlorophyll content, and resistance to diseases; (2) stress tolerance can be explained by nutrient mobilisation and biocontrol of phytopathogens in the rhizosphere and by production of phytohormones and 1-aminocyclopropane-1-carboxylate deaminase; (3) rhizobacteria favour the circulation of plant nutrients in the rhizosphere; (4) rhizobacteria favour osmolyte accumulation in plants; (5) plants inoculated with rhizobacteria have higher K+ ion concentration and, in turn, a higher K+/Na+ ratio that favour salinity tolerance; and (6) rhizobacteria induce plant synthesis of antioxidative enzymes that degrade reactive oxygen species generated upon salt shock.


Soil salinity Plant-growth-promoting rhizobacteria Mitigation Osmotolerance Nutrient uptake Plant growth 


  1. Abrol IP, Yadav JSP, Massoud FI (1988) Salt-affected soils and their management. Food and Agriculture Organization of the United Nations, Soils Bull. 39, Rome, ItalyGoogle Scholar
  2. Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66(8):3393–8. doi: 10.1128/AEM.66.8.3393-3398.2000 PubMedCentralPubMedGoogle Scholar
  3. Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292(1–2):305–15. doi: 10.1007/s11104-007-9233-5 Google Scholar
  4. Armstrong W, Wright EJ, Lythe S, Gaynard TJ (1985) Plant zonation and the effects of the spring–neap tidal cycle on soil aeration in humber salt marsh. J Ecol 73(3):323–39. doi: 10.2307/2259786 Google Scholar
  5. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–16. doi: 10.1016/j.envexpbot.2005.12.006 Google Scholar
  6. Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40(3):157–62. doi: 10.1007/s00374-004-0766-y Google Scholar
  7. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57(1):233–66. doi: 10.1146/annurev.arplant.57.032905.105159 PubMedGoogle Scholar
  8. Bal HB, Nayak L, Das S, Adhya TK (2013) Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366(1–2):93–105. doi: 10.1007/s11104-012-1402-5 Google Scholar
  9. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45(4):405–13. doi: 10.1007/s00374-008-0344-9 Google Scholar
  10. Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic-Amst 109(1):8–14. doi: 10.1016/j.scienta.2006.02.025 Google Scholar
  11. Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biol Fertil Soils 29(3):246–56. doi: 10.1007/s003740050549 Google Scholar
  12. Bharathkumar S, Paul D, Nair S (2008) Microbial diversity of culturable heterotrophs in the rhizosphere of salt marsh grass, Porteresia coarctata (Tateoka) in a mangrove ecosystem. J Basic Microbiol 48(1):10–5. doi: 10.1002/jobm.200700282 PubMedGoogle Scholar
  13. Bhattacharyya PN, Jha DK (2011) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350. doi: 10.1007/s11274-011-0979-9 PubMedGoogle Scholar
  14. Borneman J, Skroch PW, O’Sullivan KM, Palus JA, Rumjanek NG, Jansen JL et al (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62(6):1935–43PubMedCentralPubMedGoogle Scholar
  15. Bot AJ, Nachtergaele FO, Young A (2000) Land resource potential and constraints at regional and country levels. World Soil Resources Reports. 90, Land and Water Development Division, Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  16. Botella MA, del Amor FM, Amoros A, Serrano M, Martinez V, Cerda A (2000) Polyamine, ethylene and other physico-chemical parameters in tomato (Lycopersicon esculentum) fruits as affected by salinity. Physiol Plant 109(4):428–34. doi: 10.1034/j.1399-3054.2000.100409.x Google Scholar
  17. Botella MA, Martinez V, Pardines J, Cerdá A (1997) Salinity induced potassium deficiency in maize plants. J Plant Physiol 150(1–2):200–05. doi: 10.1016/S0176-1617(97)80203-9 Google Scholar
  18. Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74(2):280–6. doi: 10.1016/j.chemosphere.2008.09.013 PubMedGoogle Scholar
  19. Burrow DP, Surapaneni A, Rogers ME, Olsson KA (2002) Groundwater use in forage production: the effect of saline–sodic irrigation and subsequent leaching on soil sodicity. Aust J Exp Agric 42(3):237–247. doi: 10.1071/EA00157 Google Scholar
  20. Caravaca F, Figueroa D, Barea JM, Azcon-Aguilar C, Roldan A (2004) Effect of mycorrhizal inoculation on nutrient acquisition, gas exchange, and nitrate reductase activity of two Mediterranean-autochthonous shrub species under drought stress. J Plant Nutr 27(1):57–74. doi: 10.1081/PLN-120027547 Google Scholar
  21. Casanovas EM, Barassi CA, Andrade FH, Sueldo RJ (2003) Azospirillum-inoculated maize plant responses to irrigation restraints imposed during flowering. Cereal Res Commun 31(3–4):395–402Google Scholar
  22. Chakraborty N, Ghosh R, Ghosh S, Narula K, Tayal R, Datta A, Chakraborty S (2013) Reduction of oxalate levels in tomato fruit and consequent metabolic remodeling following overexpression of a fungal oxalate decarboxylase1[W]. Plant Physiol 162(1):364–78. doi: 10.1104/pp. 112.209197 PubMedCentralPubMedGoogle Scholar
  23. Chandler SF, Thorpe TA (1986) Variation from plant tissue cultures: biotechnological application to improving salinity tolerance. Biotechnol Adv 4(1):117–35. doi: 10.1016/0734-9750(86)90007-8 PubMedGoogle Scholar
  24. Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437–48. doi: 10.2135/cropsci2005.0437 Google Scholar
  25. Creus CM, Sueldo RJ, Barassi CA (1997) Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses (1). Plant Physiol Biochem 35(12):939–944Google Scholar
  26. Dardanelli MS, de Cordoba FJF, Espuny MR, Carvajal MAR, Diaz MES, Serrano AMG et al (2008) Effect of Azospirillum brasilense coinoculated with rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40(11):2713–21. doi: 10.1016/j.soilbio.2008.06.016 Google Scholar
  27. del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39(1):82–90. doi: 10.1071/FP11173 Google Scholar
  28. Diby P, Bharathkumar S, Sudha N (2005a) Osmotolerance in biocontrol strain of pseudomonas pseudoalcaligenes MSP-538: a study using osmolyte, protein and gene expression profiling. Ann Microbiol 55(4):243–47Google Scholar
  29. Diby P, Sarma YR, Srinivasan V, Anandaraj M (2005b) Pseudomonas fluorescens mediated vigour in black pepper (piper nigrum L.) under green house cultivation. Ann Microbiol 55(3):171–74Google Scholar
  30. Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–94. doi: 10.1111/j.1365-3040.2009.02028.x PubMedGoogle Scholar
  31. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–49. doi: 10.1080/713610853 Google Scholar
  32. Dodd IC (2009) Rhizosphere manipulations to maximize ‘crop per drop’ during deficit irrigation. J Exp Bot 60(9):2454–59. doi: 10.1093/jxb/erp192 PubMedGoogle Scholar
  33. Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45(6):563–71. doi: 10.1007/s00374-009-0366-y Google Scholar
  34. Egamberdieva D (2012) Pseudomonas chlororaphis: a salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiol Plant 34(2):751–56. doi: 10.1007/s11738-011-0875-9 Google Scholar
  35. Egamberdieva D (2011) Survival of pseudomonas extremorientalis TSAU20 and P. Chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57(3):122–7Google Scholar
  36. El-Fouly MM, Zeinab MM, Zeinab AS et al (2001) Micronutrient sprays as a tool to increase tolerance of faba bean and wheat plants to salinity. In: Horst WJ (ed) Plant nutrition, 92. Springer, Netherlands, pp 422–423. doi: 10.1007/0-306-47624-X_204 Google Scholar
  37. Elmer WH (2003) Local and systemic effects of NaCl on root composition, rhizobacteria, and Fusarium crown and root rot of asparagus. Phytopathol 93(2):186–92. doi: 10.1094/PHYTO.2003.93.2.186 Google Scholar
  38. Esquivel-Cote R, Ramirez-Gama RM, Tsuzuki-Reyes G, Orozco-Segovia A, Huante P (2010) Azospirillum lipoferum strain AZm5 containing 1-aminocyclopropane-1-carboxylic acid deaminase improves early growth of tomato seedlings under nitrogen deficiency. Plant Soil 337(1–2):65–75. doi: 10.1007/s11104-010-0499-7 Google Scholar
  39. The Food and Agriculture Organization of the United Nations (FAO) (2002) Crops and drops: making the best use of water for agriculture. FAO, Rome, Italy,
  40. The Food and Agriculture Organization of the United Nations (FAO) (1988) Salt-affected soils and their management. Soils Bulletin, 39, Rome, Italy,
  41. The Food and Agriculture Organization of the United Nations (FAO) (2005) Salt-affected soils from sea water intrusion: strategies for rehabilitation and management. Report of the regional workshop. Bangkok, Thailand,
  42. Feigin A (1985) Fertilization management of crops irrigated with saline water. Plant Soil 89:285–99. doi: 10.1007/BF02182248 Google Scholar
  43. Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aus J Plant Physiol 22(6):875–84. doi: 10.1071/PP9950875 Google Scholar
  44. Francius G, Polyakov P, Merlin J, Abe Y, Ghigo JM, Merlin C, Beloin C, Duval JF (2011) Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress. PloS one 6(5):e20066. doi: 10.1371/journal.pone.0020066 PubMedCentralPubMedGoogle Scholar
  45. Fu QL, Liu C, Ding NF, Lin YC, Guo B (2010) Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agr Water Manag 97(12):1994–2000. doi: 10.1016/j.agwat.2010.02.003 Google Scholar
  46. Geddie JL, Sutherland IW (1993) Uptake of metals by bacterial polysaccharides. J Appl Bacteriol 74(4):467–72. doi: 10.1111/j.1365-2672.1993.tb05155.x Google Scholar
  47. Georg J, Voss B, Scholz I, Mitschke J, Wilde A, Hess W (2009) Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol Syst Biol 5:305. doi: 10.1038/msb.2009.63 PubMedCentralPubMedGoogle Scholar
  48. Ghassemi AJ, Jakeman HA (1995) Nix salinisation of land and water resources human causes, extent, management and case studies. CAB International, WallingfordGoogle Scholar
  49. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Sci 2012:15. doi: 10.6064/2012/963401 Google Scholar
  50. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119(3):329–39. doi: 10.1007/s10658-007-9162-4 Google Scholar
  51. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–8. doi: 10.1006/jtbi.1997.0532 PubMedGoogle Scholar
  52. Graham PH (1992) Stress tolerance in Rhizobium and Brady-rhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38(6):475–84. doi: 10.1139/m92-079 Google Scholar
  53. Grattan SR, Grieve CM (1994) Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli M (ed) Handbook of Plant and Crop Stress, 2nd edn. Marcel Dekker, New York, pp 203–26. doi: 10.1201/9780824746728.ch9 Google Scholar
  54. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–40. doi: 10.1007/s11274-010-0572-7 Google Scholar
  55. Guillot A, Obis D, Mistou MY (2000) Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55(1–3):47–51. doi: 10.1016/S0168-1605(00)00193-8 PubMedGoogle Scholar
  56. Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig S, Okon Y (2001) Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21(6–7):553–60. doi: 10.1051/agro:2001144 Google Scholar
  57. Hamdia MBE, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44(2):165–74. doi: 10.1023/B:GROW.0000049414.03099.9b
  58. Han HS, Lee KD (2005) Physiological responses of soybean inoculation of Bradyrhizobium japonicum PGPR in saline soil conditions. Res J Agri Biol Sci 1(3):216–21Google Scholar
  59. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–99. doi: 10.1146/annurev.arplant.51.1.463 PubMedGoogle Scholar
  60. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–98. doi: 10.1007/s13213-010-0117-1 Google Scholar
  61. Hichem H, Naceur EA, Mounir D (2009) Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L.) varieties. Photosynthetica 47(4):517–26. doi: 10.1007/s11099-009-0077-5 Google Scholar
  62. Howell TA (2001) Enhancing water use efficiency in irrigated agriculture. Agron J 93(2):281–9. doi: 10.2134/agronj2001.932281x Google Scholar
  63. Ibekwe AM, Papiernik SK, Yang CH (2010) Influence of soil fumigation by methyl bromide and methyl iodide on rhizosphere and phyllosphere microbial community structure. J Environ Sci Health B 45(5):427–36. doi: 10.1080/03601231003800131 PubMedGoogle Scholar
  64. Jastrow JD, Miller RM (1991) Methods for assessing the effects of biota on soil structure. Agric Ecosyst Environ 34(1–4):279–303. doi: 10.1016/0167-8809(91)90115-E Google Scholar
  65. Jha M, Chourasia S, Sinha S (2013) Microbial consortium for sustainable rice production. Agroecol Sustain Food Syst 37(3):340–62. doi: 10.1080/10440046.2012.672376 Google Scholar
  66. Jiang HC, Dong HL, Yu BS, Liu XQ, Li YL, Ji SS, Zhang CL (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9(10):2603–21. doi: 10.1111/j.1462-2920.2007.01377.x PubMedGoogle Scholar
  67. Jofre E, Fischer S, Rivarola V, Balegno H, Mori G (1998) Saline stress affects the attachment of Azospirillum brasilense Cd to maize and wheat roots. Can J Microbiol 44(5):416–22. doi: 10.1139/w98-024 Google Scholar
  68. Johnson HE, Broadhurst D, Goodacre R, Smith AR (2003) Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry 62(6):919–28. doi: 10.1016/S0031-9422(02)00722-7 PubMedGoogle Scholar
  69. Kaymak HC, Guvenc I, Yarali F, Donmez MF (2009) The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk J Agric For 33(2):173–79Google Scholar
  70. Kim SY, Lim JH, Park MR, Kim YJ, Park TI, Se YW, Choi KG, Yun SJ (2005) Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. J Biochem Mol Biol 38(2):218–24. doi: 10.5483/BMBRep.2005.38.2.218 PubMedGoogle Scholar
  71. Klein W, Weber MH, Marahiel MA (1999) Cold shock response of bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181(17):5341–9PubMedCentralPubMedGoogle Scholar
  72. Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radish. In: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria. Ed. Station de pathologic Vegetal et Phytobacteriologic. Agners, France 2:879–82Google Scholar
  73. Kohler J, Caravaca F, Roldan A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42(3):429–34. doi: 10.1016/j.soilbio.2009.11.021 Google Scholar
  74. Kohler J, Hernandez JA, Caravaca F, Roldan A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65(2–3):245–52. doi: 10.1016/j.envexpbot.2008.09.008 Google Scholar
  75. Kotuby-Amacher J, Koenig K, Kitchen B (2000) Salinity and plant tolerance.
  76. Lamosa P, Martins LO, Da Costa MS, Santos H (1998) Effects of temperature, salinity, and medium composition on compatible solute accumulation by thermococcus spp. Appl Environ Microbiol 64(10):3591–8PubMedCentralPubMedGoogle Scholar
  77. Larcher W. (1980) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 2nd edn. Springer-Verlag, BerlinGoogle Scholar
  78. Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of pseudomonas fluorescens. Phytopathol 85(9):1021–27Google Scholar
  79. Li YQ, Zhao HL, Yi XY, Zuo XA, Chen YP (2006) Dynamics of carbon and nitrogen storages in plant–soil system during desertification process in horqin sandy land. Huan Jing Ke Xue 27(4):635–40PubMedGoogle Scholar
  80. Liu Y, Gao W, Wang Y, Wu L, Liu X, Yan T et al (2005) Transcriptome analysis of Shewanella oneidensis MR-1 in response to elevated salt conditions. J Bacteriol 187(7):2501–7. doi: 10.1128/JB.187.7.2501-2507.2005 PubMedCentralPubMedGoogle Scholar
  81. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–56. doi: 10.1146/annurev.micro.62.081307.162918 PubMedGoogle Scholar
  82. Makela A, Landsberg J, Ek AR, Burk TE, Ter-Mikaelian M, Agren GI et al (2000) Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol 20(5–6):289–98. doi: 10.1023/A:1004295714181 PubMedGoogle Scholar
  83. Malik KAB, Rakhshanda S, Mehnaz G, Rasul MS, Mirza S (1997) Association of nitrogen-fixing plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194(1–2):37–44. doi: 10.1023/A:1004742713538 Google Scholar
  84. Marcelis LFM, Van Hooijdonk J (1999) Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant Soil 215(1):57–64. doi: 10.1023/A:1004742713538 Google Scholar
  85. Marschner H (1995) Mineral nutrition of higher plant (second ed.) Academic Press, New York 889 pp.Google Scholar
  86. Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232(2):533–43. doi: 10.1007/s00425-010-1196-8 PubMedGoogle Scholar
  87. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–30. doi: 10.1016/j.plantsci.2003.10.025 Google Scholar
  88. Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49(1):69–76. doi: 10.1016/S0098-8472(02)00058-8 Google Scholar
  89. Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115(3):393–400. doi: 10.1034/j.1399-3054.2002.1150309.x PubMedGoogle Scholar
  90. Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26(6):845–56. doi: 10.1046/j.1365-3040.2003.01016.x PubMedGoogle Scholar
  91. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–81. doi: 10.1146/annurev.arplant.59.032607.092911 PubMedGoogle Scholar
  92. Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M et al (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29(1):6–22. doi: 10.1007/s00344-009-9107-6 Google Scholar
  93. Nadeem SM, Shaharoona B, Arshad M, Crowley DE (2012) Population density and functional diversity of plant growth promoting rhizobacteria associated with avocado trees in saline soils. Appl Soil Ecol 62:147–54. doi: 10.1016/j.apsoil.2012.08.005 Google Scholar
  94. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53(10):1141–9. doi: 10.1139/W07-081 PubMedGoogle Scholar
  95. Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74(2):533–42. doi: 10.2136/sssaj2008.0240 Google Scholar
  96. Nadeem SM, Zahir ZA, Naveed M, Nawaz S (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol 63(1):225–32. doi: 10.1007/s13213-012-0465-0 Google Scholar
  97. Nautiyal CS, Govindarajan R, Lavania M, Pushpangadan P (2008) Novel mechanism of modulating natural antioxidants in functional foods: Involvement of plant growth promoting rhizobacteria NRRL B-30488. J Agr Food Chem 56(12):4474–81. doi: 10.1021/jf073258i Google Scholar
  98. Nelson DR, Mele PM (2007) Subtle changes in rhizosphere microbial community structure in response to increased boron and sodium chloride concentrations. Soil Biol Biochem 39(1):340–51. doi: 10.1016/j.soilbio.2006.08.004 Google Scholar
  99. Nie M, Zhang XD, Wang JQ, Jiang LF, Yang J, Quan ZX, Cui XH, Fang CM, Li B (2009) Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biol Biochem 41(12):2535–42. doi: 10.1016/j.soilbio.2009.09.012 Google Scholar
  100. Ogut M, Er F, Kandemir N (2010) Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils 46(7):707–15. doi: 10.1007/s00374-010-0475-7 Google Scholar
  101. Omar SA, Abdel-Sater MA, Khallil AM, Abdalla MH (1994) Growth and enzyme activities of fungi and bacteria in soil salinized with sodium chloride. Folia Microbiol 39(1):23–28. doi: 10.1007/BF02814524 Google Scholar
  102. Ondrasek G, Rengel Z, Romic D, Savic R (2010) Environmental salinisation processes in agro-ecosystem of neretva river estuary. Novenytermeles 59:223–226Google Scholar
  103. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60(3):324–49. doi: 10.1016/j.ecoenv.2004.06.010 Google Scholar
  104. Park KS, Paul D, Kim JS, Park JW (2009) L-Alanine augments rhizobacteria-induced systemic resistance in cucumber. Folia Microbiol (Praha) 54(4):322–6. doi: 10.1007/s12223-009-0041-6 Google Scholar
  105. Patel D, Jha CK, Tank N, Saraf M (2012) Growth enhancement of chickpea in saline soils using plant growth-promoting rhizobacteria. J Plant Growth Regul 31(1):53–62. doi: 10.1007/s00344-011-9219-7 Google Scholar
  106. Paul D, Dineshkumar N, Nair S (2006) Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World J Microb Biot 22(4):369–74. doi: 10.1007/s11274-005-9043-y Google Scholar
  107. Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48(5):378–84. doi: 10.1002/jobm.200700365 PubMedGoogle Scholar
  108. Paul D (2013) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 53(2):101–10. doi: 10.1002/jobm.201100288 PubMedGoogle Scholar
  109. Paul D, Sarma YR (2006) Plant growth promoting rhizobacteria [PGPR] mediated root proliferation in Black pepper (Piper nigrum L.) as evidenced through GS Root software. Arch Phytopathol Plant Prot 39(4):311–314. doi: 10.1080/03235400500301190 Google Scholar
  110. Peng YL, Gao ZW, Gao Y, Liu GF, Sheng LX, Wang DL (2008) Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses. J Integr Plant Biol 50(1):29–39. doi: 10.1111/j.1744-7909.2007.00607.x PubMedGoogle Scholar
  111. Piuri M, Sanchez-Rivas C, Ruzal SM (2005) Cell wall modifications during osmotic stress in Lactobacillus casei. J Appl Microbiol 98(1):84–95. doi: 10.1111/j.1365-2672.2004.02428.x PubMedGoogle Scholar
  112. Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi: a review. Agron Sustain Dev 32(1):181–200. doi: 10.1007/s13593-011-0029-x Google Scholar
  113. Postel SL (1998) Water for food production: will there be enough in 2025? Bioscience 48(8):629–637. doi: 10.2307/1313422 Google Scholar
  114. Principe A, Alvarez F, Castro MG, Zachi L, Fischer SE, Mori GB, Jofre E (2007) Biocontrol and PGPR features in native strains isolated from saline soils of Argentina. Curr Microbiol 55(4):314–22. doi: 10.1007/s00284-006-0654-9 PubMedGoogle Scholar
  115. Rana G, Katerji N (2000) Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. Eur J Agron 13:125–153. doi: 10.1016/S1161-0301(00)00070-8 Google Scholar
  116. Rangarajan S, Saleena LM, Vasudevan P, Nair S (2003) Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant Soil 251(1):73–82. doi: 10.1023/A:1022950811520 Google Scholar
  117. Rashid N, Imanaka H, Fukui T, Atomi H, Imanaka T (2004) Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon thermococcus kodakaraensis. J Bacteriol 186(13):4185–91. doi: 10.1128/JB.186.13.4185-4191.2004 PubMedCentralPubMedGoogle Scholar
  118. Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35(6):845–54. doi: 10.1016/S0038-0717(03)00125-1 Google Scholar
  119. Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil pseudomonas sp. Appl Environ Microbiol 58(4):1284–91PubMedCentralPubMedGoogle Scholar
  120. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17(4–5):319–39. doi: 10.1016/S0734-9750(99)00014-2 PubMedGoogle Scholar
  121. Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59(5):1109–14. doi: 10.1093/jxb/erm342 PubMedGoogle Scholar
  122. Rojas-Tapias D, Moreno-Galvan A, Pardo-Diaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–72. doi: 10.1016/j.apsoil.2012.01.006 Google Scholar
  123. Romic D, Ondrasek G, Romic M, Josip B, Vranjes M, Petosic D (2008) Salinity and irrigation method affect crop yield and soil quality in watermelon (Citrullus Lanatus L.) growing. Irrig Drain 57(4):463–9. doi: 10.1002/ird.358 Google Scholar
  124. Rowell DL (1994) Soil science: methods and applications. Longman Group Ltd., UKGoogle Scholar
  125. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–26. doi: 10.1104/pp. 103.026583 PubMedCentralPubMedGoogle Scholar
  126. Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microb Biot 28(4):1503–9. doi: 10.1007/s11274-011-0952-7 Google Scholar
  127. Salama ZA, Shaaban MM, Abou El-Nour EA (1996) Effect of iron foliar application on increasing tolerance of maize seedlings to saline irrigation water. Egypt J Appl Sci 11(1):169–175Google Scholar
  128. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biot 34(10):635–48. doi: 10.1007/s10295-007-0240-6 Google Scholar
  129. Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62(1):21–30. doi: 10.1007/s10725-010-9479-4 Google Scholar
  130. Sandhya V, ASK Z, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46(1):17–26. doi: 10.1007/s00374-009-0401-z Google Scholar
  131. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–92. doi: 10.1111/j.1365-2672.2006.03179.x PubMedGoogle Scholar
  132. Sardinha M, Muller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soil Ecol 23(3):237–44. doi: 10.1016/S0929-1393(03)00027-1 Google Scholar
  133. Sarma BK, Yadav SK, Singh DP, Singh HB (2012) Rhizobacteria mediated induced systemic tolerance in plants: prospects for abiotic stress management. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer Berlin, Heidelberg, pp 225–238. doi: 10.1007/978-3-642-23465-1_11 Google Scholar
  134. Selvakumar G, Joshi P, Mishra PK, Bisht JK, Gupta HS (2009) Mountain aspect influences the genetic clustering of psychrotolerant phosphate solubilizing Pseudomonads in the Uttarakhand Himalayas. Curr Microbiol 59(4):432–8. doi: 10.1007/s00284-009-9456-1 PubMedGoogle Scholar
  135. Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25(2):333–41. doi: 10.1046/j.1365-3040.2002.00754.x PubMedGoogle Scholar
  136. Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60(3):709–12. doi: 10.1093/jxb/erp013 PubMedGoogle Scholar
  137. Shannon MC, Grieve CM (1999) Tolerance of vegetable crops to salinity. Sci Hortic 78(1–4):5–38. doi: 10.1016/S0304-4238(98)00189-7 Google Scholar
  138. Sharpley AN, Meisinger JJ, Power JF, Suarez DL (1992) Root extraction of nutrients associated with long-term soil management. In: Hatfiedl JL and Stewart BA (Ed.), Limitations to plant growth, Adv Soil Sci 19:151–217. Springer, New York, USA, Scholar
  139. Shiklomanov IA, Rodda JC (2003) World water resources at the beginning of the twenty-first century. Cambridge University Press, CambridgeGoogle Scholar
  140. Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31(2):195–206. doi: 10.1007/s00344-011-9231-y Google Scholar
  141. Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20(11):1577–84. doi: 10.4014/jmb.1007.07011 PubMedGoogle Scholar
  142. Singleton PW, Bohlool BB (1984) Effect of salinity on nodule formation by soybean. Plant Physiol 74(1):72–6. doi: 10.1104/pp. 74.1.72 PubMedCentralPubMedGoogle Scholar
  143. Son HJ, Park GT, Cha MS, Heo MS (2006) Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour Technol 97(2):204–10. doi: 10.1016/j.biortech.2005.02.021 PubMedGoogle Scholar
  144. Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312(1–2):15–23. doi: 10.1007/s11104-008-9560-1 Google Scholar
  145. Spychalla JP, Desborough SL (1990) Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers. Plant Physiol 94(3):1214–8. doi: 10.1104/pp. 94.3.1214 PubMedCentralPubMedGoogle Scholar
  146. Steil L, Hoffmann T, Budde I, Volker U, Bremer E (2003) Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol 185(21):6358–70. doi: 10.1128/JB.185.21.6358-6370.2003 PubMedCentralPubMedGoogle Scholar
  147. Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci U S A 103(38):13997–4002. doi: 10.1073/pnas.0606236103 PubMedCentralPubMedGoogle Scholar
  148. Suarez R, Wong A, Ramirez M, Barraza A, Orozco MD, Cevallos MA, Lara M, Hernandez G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microbe Interact 21(7):958–66. doi: 10.1094/MPMI-21-7-0958 PubMedGoogle Scholar
  149. Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5(1):51–8. doi: 10.1080/17429140903125848 Google Scholar
  150. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–27. doi: 10.1093/aob/mcg058 PubMedGoogle Scholar
  151. Triky-Dotan S, Yermiyahu U, Katan J, Gamliel A (2005) Development of crown and root rot disease of tomato under irrigation with saline water. Phytopathol 95(12):1438–44. doi: 10.1094/PHYTO-95-1438 Google Scholar
  152. Tripathi AK, Nagarajan T, Verma SC, Le Rudulier D (2002) Inhibition of biosynthesis and activity of nitrogenases in Azospirillum brasilense Sp7 under salinity stress. Curr Microbiol 44(5):363–367. doi: 10.1007/s00284-001-0022-8 PubMedGoogle Scholar
  153. Tripathi NK, Annachchatre A, Patil AA (2000) Role of remote sensing in environmental impact analysis of shrimp farming. Proceedings of the Map India 2000, New Delhi, India, April 10–11, pp. 14–16Google Scholar
  154. Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59(5):489–96. doi: 10.1007/s00284-009-9464-1 PubMedGoogle Scholar
  155. Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14(4):605–11. doi: 10.1111/j.1438-8677.2011.00533.x PubMedGoogle Scholar
  156. Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21(2):214–22. doi: 10.1016/S1002-0160(11)60120-3 Google Scholar
  157. van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–83. doi: 10.1146/annurev.phyto.36.1.453 PubMedGoogle Scholar
  158. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–86. doi: 10.1023/A:1026037216893 Google Scholar
  159. Volker U, Engelmann S, Maul B, Riethdorf S, Volker A, Schmid R, Mach H, Hecker M (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140(4):741–52. doi: 10.1099/00221287-140-4-741 PubMedGoogle Scholar
  160. Weber A, Jung K (2002) Profling early osmostress-dependant gene expression in Escherichia coli using DNA macroarrays. J Bacteriol 184(19):5502–07. doi: 10.1128/JB.184.19.5502-5507.2002 PubMedCentralPubMedGoogle Scholar
  161. Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321(1–2):385–408. doi: 10.1007/s11104-008-9686-1 Google Scholar
  162. Whatmore AM, Chudek JA, Reed RH (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136(12):2527–35. doi: 10.1099/00221287-136-12-2527 PubMedGoogle Scholar
  163. White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88(6):967–88. doi: 10.1006/anbo.2001.1540 Google Scholar
  164. Xu ZH, Saffigna PG, Farquhar GD, Simpson JA, Haines RJ, Walker S et al (2000) Carbon isotope discrimination and oxygen isotope composition in clones of the F (1) hybrid between slash pine and Caribbean pine in relation to tree growth, water-use efficiency and foliar nutrient concentration. Tree Physiol 20(18):1209–17. doi: 10.1093/treephys/20.18.1209 PubMedGoogle Scholar
  165. Yao LX, Wu ZS, Zheng YY, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46(1):49–54. doi: 10.1016/j.ejsobi.2009.11.002 Google Scholar
  166. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–89PubMedCentralPubMedGoogle Scholar
  167. Zarea MJ, Hajinia S, Karimi N, Goltapeh EM, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–46. doi: 10.1016/j.soilbio.2011.11.006 Google Scholar
  168. Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21(6):737–44. doi: 10.1094/MPMI-21-6-0737 PubMedGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  1. 1.Environmental Microbiology, Department of Environmental EngineeringKonkuk UniversitySeoulRepublic of Korea

Personalised recommendations